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1. INTRODUCTION 

Two decades ago, effective methods for dealing with time series models that vary with 

time have appeared in the statistical literature. Except in a case of marginal 

heteroscedasticity [1], they have never been used for official statistics. In this paper, we 

consider autoregressive integrated moving average (ARIMA) models with time-dependent 

coefficients applied to very long U.S. industrial production series. There was well an 

attempt to handle time-dependent integrated autoregressive (AR) models [2] but the case 

study was small. Here, we investigate the case of ARIMA models on the basis of [3, 4, 5]. 

As an illustration, we consider a big dataset of U.S. industrial production time series 

already used in [6]. We employ the software package Tramo in [7] to obtain linearized 

series and we built both ARIMA with constant coefficients (cARIMA) and ARIMA 

models with time-dependent coefficients (tdARIMA). In these tdARIMA models we use 

the simplest specification: a regression with respect to time. Surprisingly, for a large part 

of the series, there are statistically significant slopes, indicating that the tdARIMA models 

fit better the series than the cARIMA models.  

2. METHODS 

We consider the well-known class of seasonal ARIMA models, see e.g. [7, 8]. Models with 

time-dependent coefficients are often used in econometrics but not for ARIMA models. 

For very long time series, there is no reason that the coefficients would stay constant. They 

can be supposed to vary slowly with time although breaks can also be considered. Time 

series models with time-varying coefficients have nevertheless been studied, mainly from 

a theoretical point of view. Several papers [3, 4, 5] provide conditions for asymptotic 

properties, hence justification for statistical inference.  

2.1. The model 

To illustrate a simple ARIMA model with time dependent coefficient, we can consider the 

ARMA(1,1) model. Let the series be denoted by y = (y1, y2, …, yn). Then a tdARMA(1,1) 

model is described by the equation 

𝑦𝑡 = 𝜙𝑡
(𝑛)

𝑦𝑡−1 + 𝑒𝑡 − 𝜃𝑡
(𝑛)

𝑒𝑡−1,      (2. 1) 

where the et are independent random variables with mean zero and with standard deviation 

𝜎, and the time dependent coefficients 𝜙𝑡
(𝑛)

 and 𝜃𝑡
(𝑛)

 depend on time t, also on n, the length 

of the series but also on a small number of parameters. The simplest specification for 𝜙𝑡
(𝑛)

, 

for example, is  

𝜙𝑡
(𝑛)(𝛽) = 𝜙 +

1

𝑛 − 1
(𝑡 −

𝑛 + 1

2
) 𝜙′, (2.2) 

and a similar expression for 𝜃𝑡
(𝑛)

 using two other parameters 𝜃 and 𝜃′. The vector 𝛽 

contains all parameters to be estimated, those in 𝜙𝑡
(𝑛)

 (like 𝜙 and 𝜙′, here) and 𝜃𝑡
(𝑛)

 (𝜃 and 

𝜃′), but not the scale factor 𝜎² which is estimated separately. For the corresponding 

cARIMA model, we have of course 𝜙′ = 𝜃′ = 0. For a lag k instead of 1, we add a subscript 

k to the parameter symbols.  
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2.2. The estimation method 

For any tdARIMA model, we can estimate the parameters by maximizing the logarithm of 

the Gaussian likelihood. Under some very general conditions, it can be shown that the 

quasi maximum likelihood estimator �̂� converges to the true value of 𝛽, and is 

asymptotically normal. Moreover, the asymptotic covariance matrix of �̂� can be evaluated 

as a by-product of estimation. An improved Marquardt algorithm is used for that purpose. 

The Student t statistics shown in the next section are based on the standard errors deduced 

from the evaluation of that asymptotic covariance matrix.  

2.3. The dataset 

We use a big dataset of U.S. industrial production series already used by in [6]. See 

http://www.federalreserve.gov/releases/g17/ipdisk/ip_nsa.txt. These are 321 time series 

from January 1986 to December 2017. The models were fitted until December 2013 

leaving the remaining months to compare the data to the ex-post forecasts, using either 

forecasts with a fixed forecast origin or rolling forecasts.  

We employ the software package Tramo described in [7] to obtain partially linearized 

series by removing outliers. Indeed, presence of outliers can distort the analysis. Finding 

the cARIMA models in an automated way is also done using Tramo.  Then we replace the 

constant coefficients by linear functions of t for order k ≤ 13, giving tdARIMA models, 

using the simple linear regression approach illustrated in (2.2) for each lag k coefficient in 

the model. At this stage, we do not omit non-significant parameters. The cARIMA and 

tdARIMA models are fitted using the same specialised software package. In an earlier 

attempt of this project, the data were limited to 2016 and were not corrected for outliers, 

and only fixed forecasts were considered.  

3. RESULTS 

We compare the results of tdARIMA versus cARIMA models using the following criteria: 

• is the highest Student t statistic of the slopes, the td parameters, in absolute value, larger 

than 1.96 ? 

• is tdARIMA SBIC smaller than the corresponding cARIMA SBIC ? 

• is tdARIMA residual standard deviation smaller than the corresponding cARIMA one ? 

• is tdARIMA P-value of the Ljung-Box (LB) statistic for residual autocorrelation larger 

(with 48 lags) than the corresponding cARIMA one ? 

• is tdARIMA mean absolute percentage error (MAPE) in percent for 2014, for all horizons 

1 to 12, smaller than the corresponding cARIMA one ? 

• are tdARIMA mean absolute percentage error (MAPE) in percent for rolling forecasts, 

at horizons 1, 3, 6 and 12, smaller than the corresponding cARIMA one ? 

We count the percentages for each criterion over the 321 series. The results are shown in 

Table 1. They are very interesting since about 40% of the series show at least one 

statistically significant slope parameter at the 5% level. A majority of the series have 

smaller residual standard deviation, and less residual autocorrelation. That SBIC is worse 

for most of the series which can be partly explained by the fact that non-significant slope 

parameters were left in the model. The only unsatisfactory aspect of tdARIMA models is 

that they fail to improve the forecasts for a majority of series. To provide a better view of 

these results, we have added percentages conditional to significant time-dependency in the 

last column of Table 1. Except a smaller residual standard deviation, they confirm that only 
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one third of the “time dependent series”, i.e. those series which have at least one 

statistically significant slope parameter, provide better forecasts with a tdARIMA model 

than with a cARIMA model. For rolling forecasts, the results are still slightly worse. This 

is surprising although we know that a better fit is not a guarantee for better forecasts.  

Table 1. For each criterion, we give the percentages of improvement over the 321 U.S. 

series from cARIMA models to tdARIMA models. The last column contains percentages 

conditional to the existence of at least one statistically significant slope parameter 𝜙𝑘
′  or 

𝜃𝑘
′ .  

Criteria Percentage Percentage if 

slope  

significant 

Highest |t| statistic of slopes > 1.96 42.06 100.00 

tdARIMA SBIC < cARIMA SBIC 04.67 09.63 

tdARIMA residual std dev < cARIMA 52.02 72.59 

tdARIMA LB P-value > cARIMA 57.63 60.00 

tdARIMA 2014 forecasting MAPE < cARIMA 33.96 33.33 

tdARIMA horizon 1 rolling forecasts MAPE < cARIMA 26.48 20.74 

tdARIMA horizon 3 rolling forecasts MAPE < cARIMA 25.55 18.52 

tdARIMA horizon 6 rolling forecasts MAPE < cARIMA 27.73 21.48 

tdARIMA horizon 12 rolling forecasts MAPE < cARIMA 32.71 29.63 

4. CONCLUSIONS 

These results seem to confirm the first results obtained with that dataset of very long 

official statistics time series. Indeed, a large proportion of the tdARIMA models contain at 

least one statistically significant slope. It was a majority with slightly shorter series where 

the outliers were not removed. So it is not the presence of outliers that could lead to better 

fits by tdARIMA models. A common feature is nevertheless that the forecasts are not 

improved by replacing the cARIMA models by tdARIMA models. Consequently, we have 

not solved the paradox yet and more research is deserved. On the other side, it would be 

also interesting to conclude that traditional cARIMA models are enough to forecast very 

long time series and that no substantial gain can be obtained by considering tdARIMA 

models.  

Besides the results presented above, it is intended to work with slightly longer series (up 

to December 2018) that are completely linearized (where outliers and calendar effects are 

removed), not only corrected for outliers. We will also delete one by one the insignificant 

slope parameters in order to have tdARIMA models that are more parsimonious. For the 

statistical tests on the coefficients, we will use global tests instead of individual tests on 

each parameter involved in time-dependency. Finally, that kind of analysis can be repeated 

with other datasets, like those maintained by Eurostat.  
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