Systematic data cleaning using R

To allow for blinded review:
do NOT indicate author information or affiliation

Keywords: data editing, data validation, automation, reproducibility, monitoring

1 Introduction

Over the last decades there have been several attempts to set up frameworks for statistical
data processing and statistical data cleaning [4, 5]. One of the key notions is that a data
cleaning procedure can be decomposed into a sequence of fundamental steps, where each
step is controlled by external information defined by experts.

rules,
parameters

[data]—>[process]—>[data’]

In this model, some imperfect data set data is input for a processing step. The processing
step is generally parameterized by two types of metadata. First, a set of validation rules
(rules) describe the desired ultimate state of the dataset. Second, there are parameters that
control the details of process. For example, if the processing step concerns an imputation
procedure an imputation model specification may enter as a parameter. The process then
yields an improved dataset data’, while keeping a log of its activities in a process log
that can be used for monitoring.

In the following sections we demonstrate how a set of tools build in R[6] can be flexibly
combined to follow precisely this model. A detailed overview of methodology and R packages
can also be found in a recent publication of the authors [11].

2 Validation rules

The core of the tool set presented here is formed by R package validate[12]. This package
offers an infrastructure for validation rule management, including CRUD (create, read,
update, delete) functionality and the ability to confront data with a validation rule set. The
package treats rule sets as first-class citizens that can be programmatically manipulated. In
its implementation, it closely follows the definitions and methodology described in the ESS
handbook on validation[2]. In what follows, we will use a few columns of the retailers
data set that comes with the package as a running example.

library(validate)

data(retailers)

we select a few columns for brevity and add a unique key

dat <- cbind(id=sprintf ("RET/02d", seq_len(nrow(retailers)))
, retailers[3:6])

head(dat, 3)

vV + Vv Vv Vv VvV

id staff turnover other.rev total.rev

1 RETO1 75 NA NA 1130
2 RETO2 9 1607 NA 1607
3 RETO3 NA 6886 -33 6919

Validation rules can be defined in a text file, in a table (as in a data base), in structured
YAML file[13] or on the command line, which is what we use in the current example.

confront(dat = dat, x = rules, key = "id")

———7? = Count
. . — validations
V1 abs(turnover + other.rev - total.rev) < 1e-08 — verifiable
unverifiable
200 — still unverifiable
new unverifiable
—— satisfied
— still satisfied
--- new satisfied
\VZ3 (other.rev - 0) >= -1e-08 150 4 F =, . — violated
— still violated
new violated
V3 (turnover - 0) >= —1e-08 100 1
50 |
V2 (staff - 0) >= -1e-08
: ; T T T T] i T—— — = —— .
0 10 20 30 40 50 60 T T T f f f f
O fails O passes O nNA ltems replace_errors impute_Ir match_restrictions

Figure 1: Left: quality of the initial data set, the number of items corresponds to the number
of validated items (here: records) for each rule. Right: progress of the various components
shown in Figure 2 across data processing steps.

> rules <- validator(turnover + other.rev == total.rev
+ , staff >= 0, turnover >= (0, other.rev >= 0

+)

Data can be confronted with these rules using confront. The results can be inspected, for
example by plotting a graphical summary (see Figure 1).

> results <- confront(dat, rules, key="id")
> plot(results)

The results object contains all results and can be inspected in various ways. Providing
the name of the key column at confrontation time ensures that all validation results can be
easily related to the original data, for example by turning the results into a standard R data
frame

> head(as.data.frame(results),3)

id name value expression

1 RETO1 Vi NA abs(turnover + other.rev - total.rev) < 1e-08
2 RETO02 Vi NA abs(turnover + other.rev - total.rev) < 1e-08
3 RETO03 V1 FALSE abs(turnover + other.rev - total.rev) < 1e-08

Here, we see that validate adapted the original rules to account for machine rounding.
Also, note that in the first and second record the validation result is missing since in these
cases the variables turnover and/or other.rev are missing. Both the tolerance for machine
rounding and behaviour under missing values can be customized by the user.

Now that we identified quality demands on the output data and measured the quality of the
initial data set we are ready to start cleaning it.

3 Cleaning data

As a first step we use the errorlocate package[l] to remove erroneous values (replace them
with NA) based on Fellegi and Holt’s principle[3]

> library(errorlocate)
> datl <- replace_errors(dat, rules, value=NA)

D
o)<

D
o)<

<

Figure 2: Decomposing the difference in validation results before and after data processing.

<

Next, we use a sequence of imputation models to estimate values for the missing data.
Imputation happens without regard of the validation rules. Hence, we first locate the missing
values, next we use a deductive imputation procedure that is based on substituting observed
values in the rule set. If simplification of the rule set yields unique values for some of the
variables these are then imputed. Next, we use the missForest algorithm|7, 8] to impute any
remaining missings. After this we use the successive projection algorithm[14] as implemented
in the rspa package[10] to adjust the imputed values minimally so all rules are satisfied.

library(rspa); library(deductive); library(simputation)
A <- is.na(dat1)
dat2 <- deductive::impute_lr(datl, rules)

>
>
>
> dat3 <- simputation::impute_mf (dat2, .-id ~ .-id)

v

dat4 <- rspa::match_restrictions(dat3, rules, adjust=A4)
> all(confront(dat4, rules, lin.eq.eps=0.01))

(1] TRUE

Finally, we check whether all rules are satisfied within a tolerance of 0.01 (the default
tolerance used in the rspa package). The TRUE result indicates shows that this is indeed the
case.

4 Monitoring output

The previous steps show that it is possible to produce an output data set that matches
our restrictions defined in the rules object. However it does not give much insight into
the influence of each step. This omission is filled with the logging framework provided
by the lumberjack package[9]. This package implements a special function composition
(pipe) operator that allows for logging differences between data transformation steps. In the
example below, we use the 1bj_rules logger provided by the validate package. This logger
compares two consecutive versions of a dataset by decomposing the number of validations
according to the scheme shown in Figure 2

> library(lumberjack)

> voptions(rules, lin.eq.eps=0.01)

> logger <- validate::1bj_rules(rules)

> output <- dat }4L>)

+ start_log(logger) JL>}

+ replace_errors(rules, value=NA) JL>),
+ tag_missing() JL>)

+ impute_lr(rules) JL>),

+ impute_mf(. - id ~ . - id) Z4L>}
+ match_restrictions(rules) JL>}
+ dump_log(file="log.csv")

The lumberjack operator %L>% calls the function on its right-hand-side using the data on its
left-hand-side as first input argument. If a logger is activated (using start_logger, then
this logger is used to compare the difference between data before and after the function call.
Logging information is stored in the logger and can be written to file using dump_log. In
this case, the logger also has a plot method allowing one to quickly generate an impression
of the effect of various data processing steps. The result is shown in the right panel of
Figure 1.

> logger$plot ()

5 Conclusion

We demonstrated a few features of a suite of R packages for data cleaning. The pack-
ages implement a modular approach to data cleaning that allows for a clear separation of
concerns between programmer/data analyst and domain experts. Restrictions on output
data (validation rules) are defined completely separate from the main process flow. We
also demonstrated a powerful logging framework that is independent of the chosen data
processing steps.

References

[1] de Jonge, E. and M. van der Loo (2016). errorlocate: Locate Errors with Validation Rules. R
package version 0.1.2.

[2] Di Zio, M., N. Fursova, T. Gelsema, S. Giessing, U. Guarnera, J. Ptrauskiene, L. Q. von Kalben,
M. Scanu, K. ten Bosch, M. van der Loo, and K. Walsdorfe (2015). Methodology for data valida-
tion. Technical Report Deliverable No. 2, ESSNet on validation.

[3] Fellegi, I. P. and D. Holt (1976). A systematic approach to automatic edit and imputation.
Journal of the American Statistical association 71(353), 17-35.

[4] Oinonen, S., P. Ollila, M. Pyy-Martikainen, E. Gros, M. D. Zio, U. Guarnera, O. Luzi, L.-C.
Zhang, and J. Pannekoek (2015). Generic Statistical Data Editing Models. High-Level Group for
the modernisation of official statistics.

[5] Pannekoek, J., S. Scholtus, and M. van der Loo (2013). Automated and manual data editing: a
view on process design and methodology. Journal of Official Statistics 29, 511-537.

[6] R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

[7] Stekhoven, D. J. and P. Bithlmann (2012). Missforest—non-parametric missing value imputation
for mixed-type data. Bioinformatics 28(1), 112-118.

[8] van der Loo, M. (2017). simputation: Simple Imputation. R package version 0.2.2.
[9] van der Loo, M. (2018a). lumberjack: Track Changes in Data. R package version 0.3.0.

[10] van der Loo, M. (2018b). rspa: Adapt Numerical Records to Fit (in)Equality Restrictions. R
package version 0.2.2.

[11] Van der Loo, M. and E. de Jonge (2018). Statistical data cleaning with applications in R. John
Wiley & Sons.

[12] van der Loo, M. and E. de Jonge (2018). walidate: Data Validation Infrastructure. R package
version 0.2.6.

[13] yaml.org (2015). YAML Aint Markup Language. http://yaml.org/ (accessed 2015-08-13).

[14] Zhang, L.-C. and J. Pannekoek (2015). Optimal adjustments for inconsistency in imputed data.
Survey methodology 41(1), 127-144.

	Introduction
	Introduction
	Validation rules
	Cleaning data
	Monitoring output
	Conclusion

