Mining Big Data for Finite Population Inference*

*Joint work with Professor Jae Kim of Iowa State University

Dr Siu-Ming Tam, Chief Methodologist

Australian Bureau of Statistics

Honorary Professorial Fellow

University of Wollongong

14 March, 2019

Australian Bureau of Statistics Informing Australia's important decisions

Outline of talk

- Debunking a Big Data myth
- The set up for Big Data inference, and the theory
- An application in official statistics
- Concluding remarks

Big does not necessarily mean it is good

- Let B be the Big Data set
- Let $\delta_i = 1$ if $i \in B$, and 0 otherwise
- Let

 y_s be the sample mean of y in B . The MSE of y_s as an estimator of the population mean $\overline{Y} = \sum_{i \in \mathcal{U}} y_i / N$ is (Meng, 2018)

$$\begin{split} E\{(y_s-\overline{Y})^2\} = & E_s\{Corr(Y,\mathcal{S})^2\}(f^{-1}\text{-}1)\sigma_y^2 \\ \text{where } f=E(\mathcal{S}) = \text{sampling rate for B}. \end{split}$$

- Meng calls it the Fundamental Identity of Estimation Error
- If y is binary,

Let
$$p = \overline{Y} = \Pr(Y = 1)$$
. Let $b = \Pr(\delta = 1 \mid Y = 1) - \Pr(\delta = 1 \mid Y = 0) > 0$. Then
$$n_{\text{eff}} \doteq \frac{f^2}{b^2 p(1-p)}$$

for large N, where $n_{\rm eff}$ is the effective sample size of B .

Inferential value of Big Data sets

Effective sample size for estimating the proportion of Australians speaking English at home in the 2016 Census

		Respo	s, b	
Big Data fraction, f	Big Data size	1%	5%	10%
1/10	2,340,189	507	20	5
1/4	5,850,473	3,171	127	32
1/3	7,722,624	5,525	221	55
1/2	11,700,946	12,684	507	127

(Tam and Kim, 2018a)

- ▶ How best to use the Big Data set?
 - We rely on the use of a probability sample, A

Data structure

Scenario 1 - E.g. On line panels

Data	X	Y	Representivity
Probability sample, A	✓		Yes
Big Data, B	✓	✓	No

Scenario 2 – E.g. Satellite imagery data, social media, search engine terms

Data	X	Y	Representivity
Probability sample, A	✓	✓	Yes
В	✓		No

Scenario 3 - Special case of Scenario 1(to avoid making MAR assumptions)

Data	X	Y	Representivity
Probability sample, A	✓	✓	Yes
В	✓	✓	No

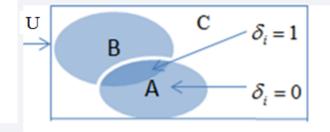
For the rest of the talk, we shall consider only Scenario 3

The set up – the ABC of Big Data (Tam and Kim, 2018b)

- Finite population: $U = \{1, \dots, N\}$.
- Parameter of interest: $\bar{Y}_N = N^{-1} \sum_{i=1}^N y_i$ (Or equivalently: $\theta = \sum_{i \neq j} y_i$)
- Big data sample: $B \subset U$.

$$\delta_i = \begin{cases} 1 & \text{if } i \in B \\ 0 & \text{otherwise.} \end{cases}$$

- Estimator: $\bar{y}_B = N_B^{-1} \sum_{i=1}^N \delta_i y_i$, where $N_B = \sum_{i=1}^N \delta_i$ is the big data sample size $(N_B < N)$.
- Assume we have a random sample of U, denoted by A;
 N and N_B are also assumed known.

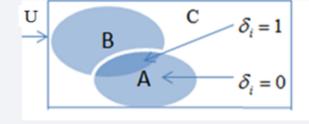


The key idea

• From $\theta = \sum_{i \in B} y_i + \sum_{i \in C} y_i$, $\hat{\theta} = \sum_{i \in U} \delta_i y_i + N_C \frac{\sum_{i \in A} w_i (1 - \delta_i) y_i}{\sum_{i \in A} w_i (1 - \delta_i)}$

where the second component is provided by the random sample, A, of size n

- Significant improvement in efficiency in $\hat{\theta}$ due to B e.g. for SRS, the effective sample size of n will be increased by a factor $= \frac{S^2}{S^2} \frac{1}{(1 N_-/N)};$
- Post-stratified estimator, $\hat{\theta}_A$, can be shown to be equivalent to a calibration estimator, $\hat{\theta}_A = \sum_{i \in A} w_i^* y_i$ where w_i^* minimises the Chi squared distance $D(w, w^*) = \sum_{i \in A} w_i (\frac{w_i^*}{w_i} 1)^2$ subject to $\sum_{i \in A} w_i^* (1 \delta_i, \delta_i, \delta_i y_i, \delta_i x_i) = (N_c, N_B, \sum_{i \in B} y_i, \sum_{i \in B} x_i), \text{ where } w_i \text{ is the HT weight}$



Addressing measurement errors in Big Data

Extension 1 - Measurement error in sample B

Data Structure

Data	X	Y^*	Y	Represent?
A	√		✓	Yes
В	✓	✓		No

 Y^* : proxy variable for $Y, E(Y^*) \neq E(Y)$

Parameter of interest: $\theta = \sum_{i \in U} y_i$

Use
$$\hat{\theta}_A = \sum_{i \in A} w_i^* y_i$$
 where w_i^* 's minimises $D(w, w^*)$

subject to

$$\sum_{i \in \mathcal{A}} w_i^* (1 - \delta_i, \delta_i, \underline{\delta_i} x_i, \underline{\delta_i} y_i^*) = \sum_{i \in \mathcal{U}} (1 - \delta_i, \delta_i, \underline{\delta_i} x_i, \underline{\delta_i} y_i^*)$$

Addressing measurement errors in integrating sample

Extension 2 - Measurement error in sample A

Data Structure

Data	X	Y^*	Y	Represent?
A	√	√		Yes
В	✓		✓	No

Use
$$\hat{\theta}_A = \sum_{i \in A} w_i^* \hat{y}_i$$
 where w_i^* 's minimises $D(w, w^*)$ subject to

$$\sum_{i \in \mathcal{A}} w_i^* (1 - \delta_i, \delta_i, \delta_i x_i, \frac{\delta_i y_i}{\delta_i}) = \sum_{i \in \mathcal{U}} (1 - \delta_i, \delta_i, \delta_i x_i, \frac{\delta_i y_i}{\delta_i}), \text{ where } \hat{y}_i \text{ is imputed using a}$$

measurement error model for $i \in A$.

Extension 3 - Handling Unit Nonresponse in sample A

Data Structure

Data	X	Y^*	Y
A_R	✓		✓
A_M	✓		
В	✓	✓	

$$A = A_R \cup A_M$$

Y is not observed in A_M

Use
$$\hat{\theta}_{A} = \sum_{i \in A} r_i w_i^* y_i / \hat{\pi}_i$$
 where $r_i = 0,1$; $\hat{\pi}_i = \text{response propensity}$ and

$$w_i^*$$
's minimises $D(w_i\hat{\pi}_i^{-1}, w^*) = \sum_{i \in A} r_i w_i \hat{\pi}_i^{-1} (\frac{w_i^*}{w_i \hat{\pi}_i^{-1}} - 1)^2$ subject to

$$\sum_{i \in A} r_i w_i^* (1 - \delta_i, \delta_i, \delta_i x_i, \delta_i y_i^*) = \sum_{i \in U} (1 - \delta_i, \delta_i, \delta_i x_i, \delta_i y_i^*)$$

An ABS example

- Two data sources
 - 4 ABS (Australian Bureau of Statistics) 2015-16 Agricultural Census: 85% response rate
 - ② REACS (Rural Environment and Agricultural Commodities Survey) data (2014-15), sample size ≅ 34K.
- Observation
 - $\mathbf{0}$ y_i : study variable for year 2015-16
 - \tilde{y}_i : study variable for year 2014-15
- $\delta_i = 1$ if participated at Census and $\delta_i = 0$ otherwise.

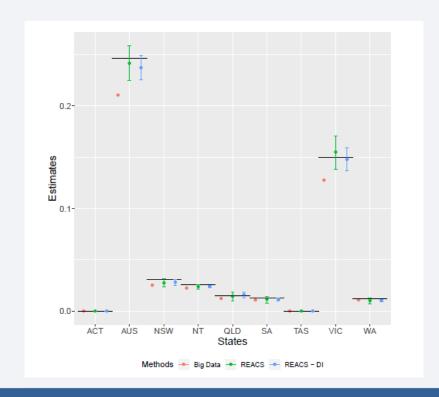
Assume no measurement error in REACS case- 8 and 13 fold improvement in efficiency

Table: Bias, Variance and Mean Squared Error of Selected Agricultural Commodities

+		_	_	
Variable	Estimator from	Bias (x10 ³)	Var (x109)**	MSE (x10 ⁹)
DAIRY	REACS only (A)	0.00	6.19	6.19
	Agricultural Census only (B)*	-362.45	0	131.37
	(A) and (B)	0.00	0.43	0.43
BEEF	REACS only (A)	0.00	85.00	85.00
	Agricultural Census only (B)*	-2,389.53	0	5,709.86
	(A) and (B)	0.00	6.79	6.79
WHEAT	REACS only (A)	0.00	171.29	171.29
	Agricultural Census only (B)*	-2,043.52	0	4,176.00
	(A) and (B)	0.00	20.83	20.83

^{*} Estimated by the difference between the total from B and the published ABS estimate from the Agriculture Census adjusted for non-response.

Only 1.5 fold increase in efficiency with measurement errors in REACS – DAIRY cattle results



- Random samples are here to stay in the Big Data world
 - Unless there are defensible ways to adjust for Big Data biases
- We have not discussed variance estimation
 - but the methods will be published elsewhere
 - In the ABS example, we use bootstrap samples to estimate uncertainty

References

- Meng, X.L. (2018). Statistical paradises and paradoxes in big data (I): Law of large population, big data paradox, and he 2016 US presidential election. The Annals of Applied Statistics 12(2), 685-726
- ▶ Tam, S.M and Kim, J.K. (2018a). Big Data ethics and selection bias: An official statistician's perspective. Statistical Journal of the International Association for Official Statistics 34(4), 577-588.
- Tam, S.M and Kim, J.K. (2018b). Mining the new oil for official statistics. Conference paper presented to BigSurv18, Barcelona.

Questions?

Siu-Ming.Tam@abs.gov.au