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Big does not necessarily mean it is good

¢ Let B be the Big Data set
e J.et 5=1ifi B, and 0 otherwise

o [et

7, be the sample mean of y inB. The MSE ofy, asan

estimator of the population mean ¥ =3 v,/ N is (Meng, 2018)
E{(y,~TY}=E {Corr(¥.8)}(f ' 1)oy
where [ = E(&) = sampling rate for B.
e Meng calls it the Fundamental Identity of Estimation

Error

e If ris binary,

Letp=F=Pr¥=1).Letb=Pr(§=1|¥ =1)— Pr(6=1|¥ =0)>0. Then
ng= ot
© Ep(l-p)
forlarge N, where n,, is the effective sample size ofB.
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Inferential value of Big Data sets e

{ }0 Effective sample size for estimating the proportion of

p Australians speaking English at home in the 2016 Census

Response bias, b

Big Data fraction, f  Big Data size 1% 5% 105
1710 2,340,189 507 20 3
1/4 5,850.473 3,171 127 32
1/3 7.722.624 5,525 221 55
112 11,700,946 12,684 507 127

(Tam and Kim, 2018a)

» How best to use the Big Data set?
— We rely on the use of a probability sample, A

27/05/2019
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Data structure

Scenario 1 — E g. Online panels

Data X Y Representivity
Probability sample, A s Yes
BigData. B e e No

Scenario 2 — E_g_ Satellite imagery data, social media, search engine terms

Data X Y Representivity
Probability sample, A s s Yes
B e No

Scenario 3 — Special case

of Scenario 1(to avoid making MAR assumptions)

Data

X Y Representivity

Probability sample, A
B

e e Yes

s e No
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» For the rest of the talk,
we shall consider only
Scenario 3
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The set up — the ABC of Big Data (Tam and Kim, 2018b)%:wa

Statistics

r
: }o o Finite population: U = {1,..- ,N}.

9 o Parameter of interest: Yy = N~!'Y"  4,(Or equivalently: 8 = > oY)
o Big data sample: I3 c U.

5 1 ticeh
71 0 otherwise.

. u
o Estimator: g, = NN Sy, where Ny =¥V 5, is the big data 5 B -
sample size (NVy < N). -~

*  Assume wehave a random sample of U, denotedbv A;
N and N are also assumed known.




The key idea Rsralan

Statistics

D 10 T -8,

¢ From 8= +Y v, 6=V 8y +N, =t

ZrL z C Tw-a)
f=d

where the second component is provided by the random sample,

A ofsizen U C 51
e Significant improvement in efficiency in & dueto B —e.g. for —>> B T

SRS, the effective sample size of n will be increased by a factor q .

R | 9, =0

CSEQA-N,INY S

¢ Post-stratified estimator. 6,. can be shown to be equivalent to a
calibration estimator, 6, =3 w;y, where w minimises the Chi

squared distance D(w,w")=2 w, (“— -1°subject to
W,

s

I w(1-4.8.6y,.6x)=(N_.N,. 7 5.3 x), Where w,is the HT weight

imd ieR ieF



Addressing measurement errors in Big Data

Extension 1 - Measurement error in sample B

Data Structure

Data | X Y* Y Represent?
A v v Yes
B A No

y*: proxy variable for Y, E(Y*) # E(Y)
Parameter of interest: i = 3", _,, ui
Use 8, = Z EAH-{‘}‘I. where W 's minimises D{(w,w")

subject to
ZW:(I— I5&:5&: Cﬁ;l’fzﬁfj":}zz(l_ 5:'=5z':5:'xi=5i}.:)
=) =0
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Addressing measurement errors in integrating

Bureau of

Sa m p I e Statistics

Extension 2 - Measurement error in sample A

Data Structure

Data | X Y* Y Represent?
A o Yes
B | v v No

Use éd = 2 Ed‘nir‘:j'l_. where 'W; 's minimises D(w.w') subject to
z w,(1-68,.6,8x,8,)= Z (1-8,,6,,6x,.6,y,), where J, is imputed using a
ied =i

measurement error model for i £ 4.
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Extension 3 - Handling Unit Nonresponse in sample A Auﬁr:an

Bureau of
Statistics

Data Structure

A" Data
100140 1 4 AR

I. }o .'1B_u

A=AprUAM

RN P

Y is not observed in A

- _ ‘* . ! i g _ - .
Use 8, = zm rw. v,/ 7, where r, =0.1; 7, = response propensity and

w‘_ —1)? subject to

w, 's minimises D(w7 ", w') = > rw A (

e
jmd “'.-"'"';

> (1-8.6,6%,65) = X (1-5.6.6x.63)
j= A L’
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An ABS example Bureau.of

Statistics

@ [wo data sources

@ ABS (Australian Bureau of Statistics) 2015-16 Agricultural Census:

85% response rate
@ REACS (Rural Environment and Agricultural Commodities Survey)
data (2014-15), sample size = 34K.

@ Observation

@ yi: study variable for year 2015-16
@ i: study variable for year 2014-15

@ 0; = 1 if participated at Census and d; = 0 otherwise.
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Assume no measurement error in REACS case- 8

Australian
. - e o Bureau of
and 13 fold improvement in efficiency estisnc
" *o Table: Bias, Variance and Mean Squared Error of Selected Agricultural Commodities
A
0 Variable Estimator from Bias (x10%) Var (x10%)™ MSE (x10%)
DAIRY REACS only (A) 0.00 6.19 6.19
Agricultural -362.45 0 131.37
Census only (B)*
(A) and (B) 0.00 043 043
BEEF REACS only (A) 0.00 85.00 85.00
Agricultural -2.389.53 0 5,709 86
Census only (B)
(A) and (B) 0.00 6.79 6.79
WHEAT REACS only (A) 0.00 171.29 171.29
Agricultural -2.043.52 0 4.176.00

Census only (BY

(A) and (B) 0.00 20.83 20.83
* Estimated by the difference between the total from B and the published ABS estimate from the Agriculture

Census adjusted fornon-response.
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Only 1.5 fold increase in efficiency with s
measurement errors in REACS — DAIRY cattle results | =t

Statistics

0.2-

Estimates

0.1-

3 LI -—F =
0.0- =—s—s—
ACT  aJS NSW NT QD Sa TAS  Vvic WA
States

Methods —=- BigData -= REACS —= REACS-DI

27/05/2019
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Concluding comments

B » Random samples are here to stay in the Big Data world
— Unless there are defensible ways to adjust for Big Data biases

» We have not discussed variance estimation
— but the methods will be published elsewhere

— In the ABS example, we use bootstrap samples to estimate
uncertainty
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