

New weighting methods, including explicit correction of sampling weights for non-response and attrition, in the reformed Belgian Labour Force Survey

Camille Vanderhoeft, Astrid Depickere, Anja Termote - Statistics Belgium

Keywords: LFS INDICATORS, PANEL DESIGN, MIXED EFFECTS LOGISTIC REGRESSION, 2-STEP CALIBRATION, BREAKS IN TIME SERIES

1. Quarterly samples: from cross-sectional to quarterly rotating panel survey

 Cross-sectional survey: independent quarterly samples^(a) 	• Panel survey ^(c) - Start-up phase (2): qua
■	■ 2017 T1 : RG1(3) ∪ RG2(3) ∪
2016 T1 : S1 (1)	■ 2017 T2 : RG2(4) ∪ RG3(2) ∪ RG4(2) ∪
2016 T2 : S2 (1)	■ 2017 T3 : RG3(3) ∪ RG4(3) ∪ RG5(2) ∪
	■ 2017 T4 : RG5(3) ∪ RG6(3) ∪
 Panel survey^(b) - Start-up phase (1) 	
	 Panel survey^(c) - Fully operational
■ 2016 T3 : [<mark>RG1 ∪ RG2 ∪ RG3</mark>] (1) = S3 (1)	■ 2018 T1 : RG6(4) ∪ RG7(3) ∪ RG10(2)
• 2016 T4 : $\frac{ RG1 \cup RG2 }{ RG2 } (2) \cup [RG4 \cup RG5 \cup RG6] (1) = S4 (1)$	■ 2018 T2 : RG7(4) ∪ RG8(3) ∪ RG11(2)
	■ 2018 T3 : RG8(4) ∪ RG9(3) ∪ RG12(2)
^(a) 2-stage sampling: (1) SYS-PPS of PSUs (stratified and sorted frame), (2) SRS of HHs	■ 2018 T4 : RG9(4) ∪ RG10(3) ∪ RG13(2)
^(b) Each RG (Rotation Group) : by 2-stage sampling	• Etc.
(c) <u>Notation</u> : $RGr(w)$ = respondent sample remaining after wave w from RG no. r; similarly	
for quarterly respondent samples $Sq(w)$ etc.	

https://statbel.fgov.be

uasi operational $RG6(2) \cup RG7(1) = S1'$ $\cup RG7(2) \cup RG8(1) = S2'$ $\cup RG8(2) \cup RG9(1) = S3'$ $RG9(2) \cup RG10(1) = S4'$ $) \cup RG12(1) = S2''$ $) \cup RG13(1) = S3''$ $2) \cup RG14(1) = S4''$

2. Quarterly weighting up to versus after 2016 T4

Until 2016 T4	Since 2017 T1		
< IND; <i>d</i> ; Strat12 × Sex × Agecat; Lin >	< IND; $d/\tilde{\pi}$; Strat12 × Sex × Agecat + RG_c; I		
i.e. classical post-stratification	more general calibration		
 Strat12 : NUTS 2 region Sex : sex of IND (# 2) Agecat : age class of INI 	on distribution of Strat12, Sex and Agecat		
 Starting from sampling weights <i>d</i> 	• Starting from adjusted sampling weights $d/\tilde{\pi}$, using estimated response probabilities $\tilde{\pi}$		
	 Including contrast constraints " RG_c " between subsamples 		
 Linear method or any other 	5		
 Linear method or any other Implicit assumption: sufficient correction for nonresponse through this calibration 	subsamples Linear method as long as it works 		
o Implicit assumption: sufficient correction for	subsamples o Linear method as long as it works o Explicit correction for nonresponse and attrition		

2.a. Innovation I : explicit correction for nonresponse / attrition

\rightarrow Why ?

Recall, e.g. for 2017 T2, complexity of the quarterly sample:

 $RG2(4) \cup RG3(2) \cup RG4(2) \cup RG7(2) \cup RG8(1) = S2'$

- o RG(s) in wave 1 : effect of "initial" nonresponse (NR) only
- RG(s) in wave 2 : effect of "initial" NR + attrition from wave 1
- o RG(s) in wave 4 : effect of "initial" NR + attrition from wave 1 + attrition from wave 2 + attrition from wave 3

To be expected:

- > Different response levels after different numbers of waves / for different RGs
 - Expected and observed: ~70% after wave 1, ~60% after wave 2, ~54% after wave 3, ~48% after wave 4
- > Different response mechanisms at different stages
 - Initial NR : non-contact, refusal, disability, lack of interviewer, ...
 - Attrition from wave w to w+1 : interviewer drop-out, respondent getting bored, ...
- > Availability of **predictors**
 - For initial sample: background characteristics from National Population Register (sex, age, HH composition, ...)
 - For respondents: ILO status (StatBIT), level of education, \dots (\rightarrow interesting, but not yet used)

\rightarrow How ?

The approach:

- Modelling per RG r
- Modelling response at household (HH) level Working with interviewers...
 - o ... contacting the HH, or its reference person
- Modelling **cumulative response**, i.e. response from initial sample to wave w, for RGr*(w)
 - A simplification...
 - o ... limiting availability of predictors

Modelling differences between PSUs

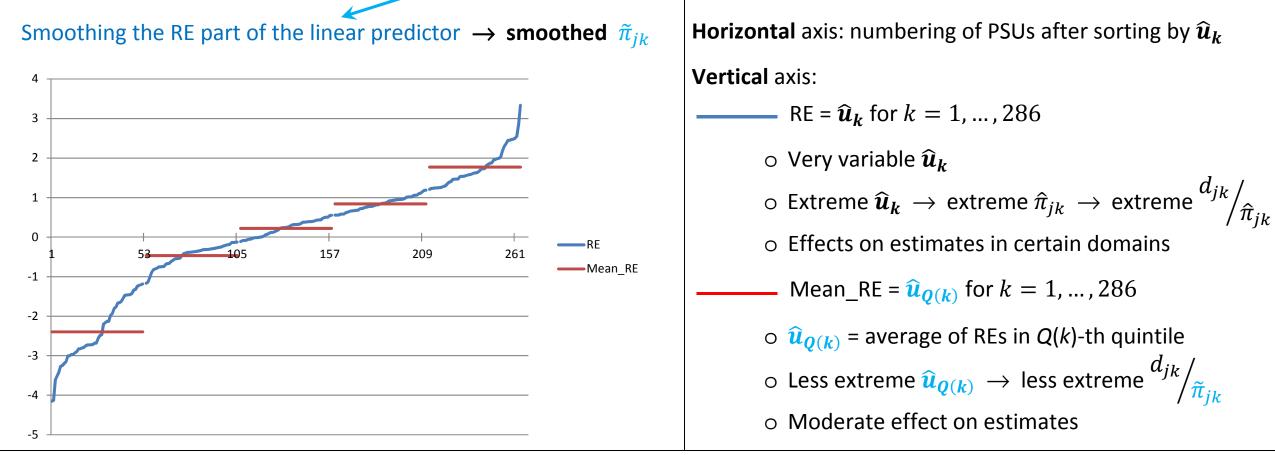
- Randomly selected PSUs (stage 1 in sampling)
- Between PSU differences not fully captured through predictor(s)
- o Many-to-1 relationship between PSUs and INTerviewers

Notation:

• $RGr^*(w)$ = entire initial sample or rotation group no. r, with indication of response or nonresponse after wave w

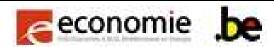
The model for any RG*r**(*w*): a *random intercept logistic* regression model

- **Dependent** variable = cumulative response indicator for HH *j* in PSU *k* with distribution $y_{ik}|u_k \sim Bin(1, \pi_{ik})$
- Linear predictor $\eta_{jk} = \beta_0 + HHtype_j^T\beta_1 + Origin_j^T\beta_2 +$ $Province_i^T \beta_3 + Urbanisation_i^T \beta_4 + u_k$
 - *Fixed effect* variables
 - HH-type (# 5), Origin (# 3), Province (# 11), Degree of urbanization (# 3)
 - Available for all initially selected HHs
 - \circ **Random effect** u_k of PSU on intercept, with $(u_k) \sim N(0, \sigma_u^2 I)$
 - Measuring geographic variation in (non)response
 - Measuring variation between interviewers
- Logit link function: $\eta_{jk} = g(\pi_{jk}) = logit(\pi_{jk}) = ln\left(\frac{\pi_{jk}}{1-\pi_{jk}}\right)$
- **Smoothing** the estimates $\hat{\pi}_{ik}$



\rightarrow Quality? Prediction power, e.g. for RG*r**(*w*) in 2017 T4, before and after smoothing

		AUC (*) ~ predictive power of the model, <i>using</i>				
RG	Wave	Original estimated probs. $\hat{\sigma} = \sigma^{-1}(\hat{\sigma})$	Marginal probs.	Smoothed probs.		
r	W	$ \hat{\pi}_{jk} = g^{-1}(\hat{\eta}_{jk}) $ = $g^{-1}(x_{jk}^T \hat{\beta} + \hat{\boldsymbol{u}}_k) $	$\hat{\pi}_{jk}^{0} = g^{-1} \left(x_{jk}^T \hat{\beta} + 0 \right)$	$\widetilde{\pi}_{jk} = g^{-1} \left(x_{jk}^T \widehat{\beta} + \widehat{\boldsymbol{u}}_{\boldsymbol{Q}(\boldsymbol{k})} \right)$		
5	4	0.8445	0.6261 (*)	0.8368	(*) 0.6	
6	3	0.8469	0.6279	0.8374	fixed efi	
9	2	0.8158	0.6474	0.8059		
10	1	0.8303	0.6228	0.8181]	



https://statbel.fgov.be

AUC = area under the **ROC** curve

6291 for corresponding ffects model (RE $u_k \equiv 0$, or $\sigma_u^2 = 0$)

2.b. Innovation II : calibration with contrast constraints

\rightarrow Why and how ?

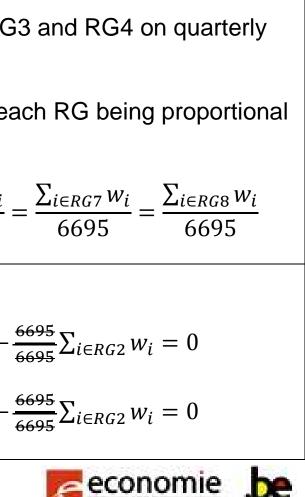
Recall, e.g. for 2017 T2, complexity of the quarterly sample:

 $\mathsf{RG2}(4) \cup \mathsf{RG3}(2) \cup \mathsf{RG4}(2) \cup \mathsf{RG7}(2) \cup \mathsf{RG8}(1) = \mathsf{S2'}$

o 3 "normal" RGs + 2 small RGs (result of splitting 1 normal RG)

• Same 2 stage sampling for each of these 5 RGs, whence:

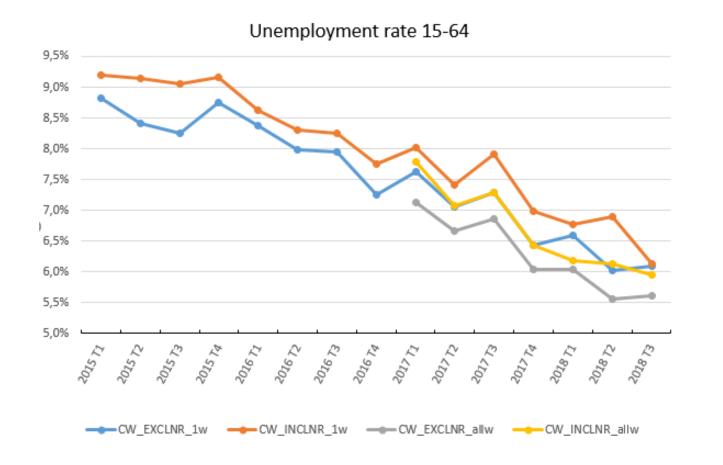
RG	2	3	4	7	8	
initial # HHs =	6,695	3,965	2,132	6,695	6,695	
$\sum_{jk} d_{jk} =$	М	М	М	М	М	
initial # INDs ≈	14,729	8,723	4,690	14,729	14,729	
$\sum_{i} d_{i} / \widetilde{\pi}_{i} \approx$	Ν	N	N	Ν	N	
\sum_{jk} denotes summation over responding HHs						
\sum_{i}^{r} denotes summation over responding INDs						


- **Problem**: too much impact of RG3 and RG4 on quarterly estimates
- **Solution**: forcing the impact of each RG being proportional to its original size, i.e.

$$\frac{\sum_{i \in RG2} w_i}{6695} = \frac{\sum_{i \in RG3} w_i}{3965} = \frac{\sum_{i \in RG4} w_i}{2132}$$

 \rightarrow \rightarrow \rightarrow $\,$ Transforming into 4 contrast constraints $\,$ \leftarrow \leftarrow \leftarrow

$$\circ \text{ RG2} <> \text{ RG3} : \quad \sum_{i \in RG3} w_i - \frac{3965}{6695} \sum_{i \in RG2} w_i = 0 \qquad \qquad \circ \text{ RG2} <> \text{ RG7} : \quad \sum_{i \in RG7} w_i - \frac{46}{6695} \sum_{i \in RG2} w_i = 0 \qquad \qquad \circ \text{ RG2} <> \text{ RG8} : \quad \sum_{i \in RG8} w_i - \frac{46}{6695} \sum_{i \in RG2} w_i = 0 \qquad \qquad \circ \text{ RG2} <> \text{ RG8} : \quad \sum_{i \in RG8} w_i - \frac{46}{6695} \sum_{i \in RG8$$

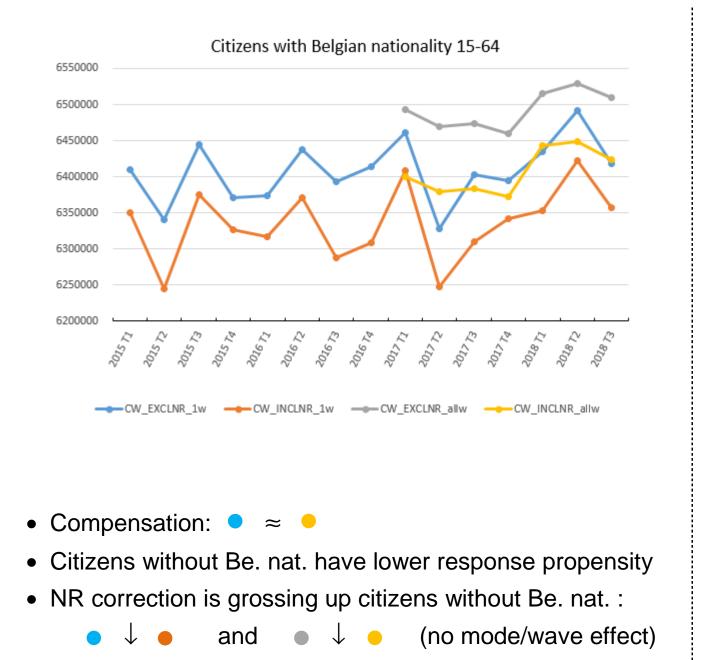


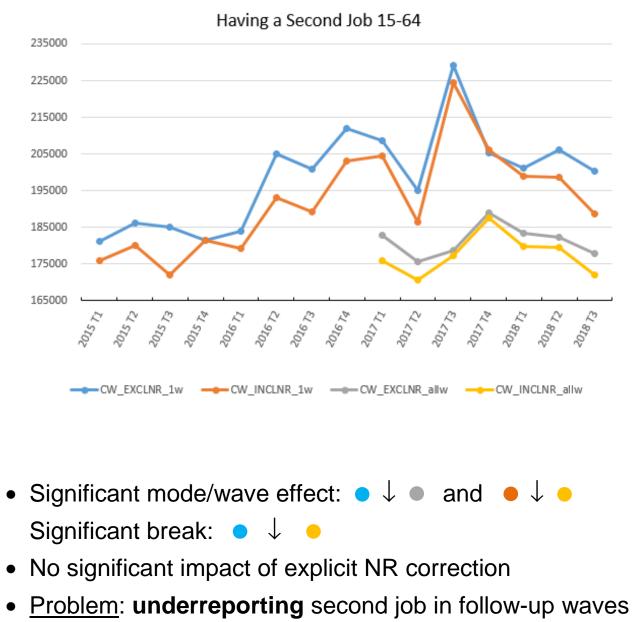
3. Result : effect on UR for age class 15-64

- Cross-sectional versus panel survey
- Old 1-step versus new 2-step calibration
- Legend: estimation using calibrated weights excluding preliminary nonresponse correction, based on wave 1 data
 - estimation using calibrated weights including preliminary nonresponse correction, based on wave 1 data
 - estimation using calibrated weights excluding preliminary nonresponse correction, based on all data
 - estimation using calibrated weights including preliminary nonresponse correction, based on all data

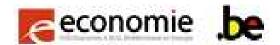
- Break not visible in time series for UR 15-64
 - o If and (2) new weighting method (2 step)
 - > a break would have occurred: 1
 - o If (4) switched to panel survey (4 waves) but (5) continued with old weighting method (1 step)
 - \succ a break would have occurred: $\bigcirc \downarrow \bigcirc$
 - Combination of
 - (4) switching to panel survey (4 waves)
 - and (2) new weighting method (2 step)
 - Compensation: ≈ (

https://statbel.fgov.be




(1) continued with cross-sectional survey (1 wave)

Some other results



Read more in : C. Vanderhoeft, A. Depickere and A. Termote, New weighting methods, including explicit correction of sampling weights for non-response and attrition, in the reformed Belgian Labour Force Survey, Analyses Statbel (2019). (To be published at https://statbel.fgov.be/nl/over-statbel/methodologie/analyses)

https://statbel.fgov.be

