

European Master in Official Statistics Estimation of measurement errors in social survey

 D_2

 E_2

 $-\prod X_2 X_1 \longrightarrow$

 $\prod Y_2 X_2$

 Y_2

 $-\prod X_3 X_2 \longrightarrow X_3$

∏Y₃X₃

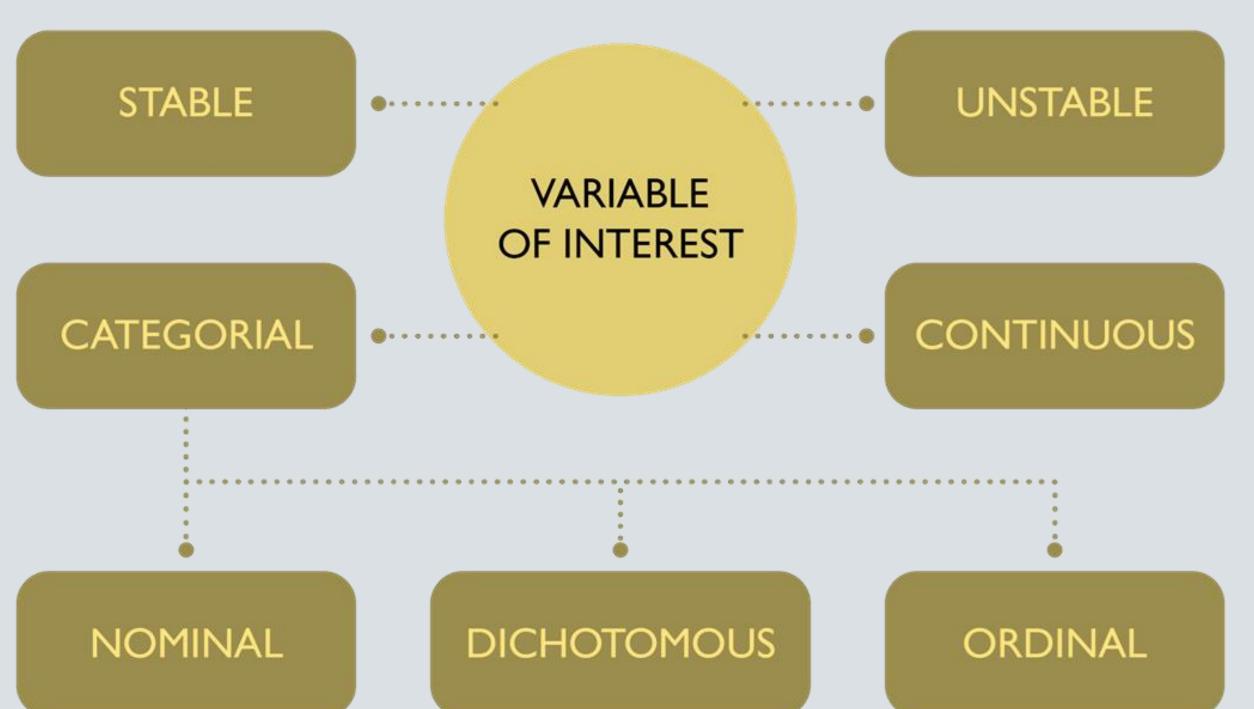
 Y_3

 X_1

 Y_1

 Y_1

 E_1


 D_P

Υ_P

E_Ρ

EMOS program @ KU Leuven

The EMOS aims at providing students with an advanced training in the specific themes of statistics in general and official statistics in particular, supported by the complementary quantitative and statistical tools offered by the hosting university. The main objective of the EMOS is to enhance the abilities of students to understand and to be able to analyse European official data at different levels: quality, production process, dissemination, and analysis in a national, European and international context.

Stable continuous variables

The Intraclass correlation coefficient:

 $R = Cor(Y_1, Y_2)$

Main assumption: $T_1=T_2$ or $T_1=c+T_2$ with *c* being a constant Advantage: The theory is simple to understand and communicate • This method is easy to apply

Measurement error

Measurement error is the difference between the value of a characteristic provided by the respondent and the true but unobserved value of that characteristic.

R = Var(T)/Var(E)

Yi

Reliability

Reliability *R* is defined as the proportion of the observed variance from the survey response that is accounted for by the variance of the true score.

Unstable continuous variables

Quasi-Markov simplex model: $Y_w = T_w + E_w$ and $T_w = \beta_{w,w-1}T_{w-1} + D_w$

- Advantage: The simplex model accounts for the instability of true scores
 There are different sets of assumptions for different data
- Limitation: The data of at least 3 replications (waves) is required
 - The data must follow the simplex structure $Cor(Y_3, Y_1) < Cor(Y_3, Y_2)$ and $Cor(Y_3, Y_1) < Cor(Y_2, Y_1)$
 - The assumptions can be restrictive and difficult to achieve

Unstable ordinal and dichotomous variables

- Quasi-Markov simplex model for categorical variables:
- Dichotomous variables: Tetrachoric correlation
- Limitation: The assumption of stable true score is difficult to achieve
 - The data collection cost can be high, especially for large social surveys

Stable categorical variables

Cohen's Kappa coefficient (Nominal and Dichotomous):

 $\kappa = \frac{P_t - P_e}{1 - P_e}$

 T_1

 Y_1

 E_1

 T_2

 Y_2

 E_2

- P_t : proportion of the total number of households with unchanged responses
- P_e the proportion of the households that have the same response by accident
- For ordinal variables, we can add either a quadratic or linear weight to the calculation of the proportions
- Advantage: The Cohen's Kappa coefficient is simple to apply
- This method is widely used and therefore easy to communicate
- Limitation: The reliability estimate is biased downward if the class distribution is unbalanced
- Same as ICC (The stability assumption is difficult to achieve and the data collection cost is high)
 - The choice of weighting scheme is arbitrary and can be difficult to justify

Nominal variables: Possible after transforming a nominal variable into multiple dichotomous variables

E_i

Ordinal variables: Polychoric correlation

Advantage: Same advantages ad the continuous case

Disadvantage: Same limitations as the continuous case

This method assumes an underlying continuous variable of interest being measured by these categorical variables, which may not be true

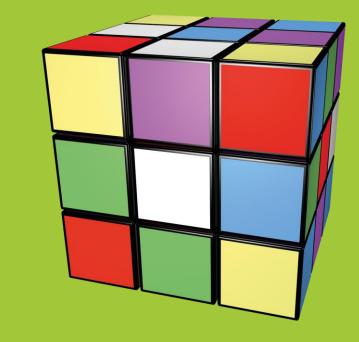
Unstable nominal variables

The Latent Markov transition model (LTM) can be used to estimate reliability by analyzing the latent class membership and its transition over time

Yule's Q (Clogg & Manning, 1996):
$$R = Q_{Y_m X} = \frac{\theta_{Y_m X} - 1}{\theta_{Y_m X} + 1}$$

Advantage:Item-response probability of each level of the nominal variables $\Pi^{Y_1X_1}$

Directly estimate the reliability of unstable nominal variables


Limitation: This method is difficult to implement

- Can only be used to estimate reliability of large samples
 - The estimate can be biased downward if the class distribution is unbalance

Type of variable		Stable variable	Unstable variable
Continuous		Intraclass correlation coefficient (1,1)	Quasi-Markov simplex model with Pearson
			correlation/covariance matrix
Categorical	Nominal	Cohen's Kappa coefficient OR Latent	Quasi-Markov simplex model with Tetrachoric correlation
		class model	on dummy variables OR Latent transition model
	Dichotomous	Cohen's Kappa coefficient OR Latent class model	Quasi-Markov simplex model with Tetrachoric correlation
	Ordinal	Weighted Kappa coefficient OR Weighted Quasi-Markov simplex model with Polychoric correlation	
		Latent class model	

Leuven Statistics Research Centre (LStat) KU Leuven Celestijnenlaan 200 B, 3000 Leuven http://lstat.kuleuven.be/masterBologna/emos-track

Programme Director: <u>Geert.Molenberghs@kuleuven.be</u> Programme Coordinator: <u>An.Carbonez@kuleuven.be</u>

