Estimating cannabis consumption using metabolite markers (THC-COOH) in the wastewater

What are we doing?

- Using Wastewater-based epidemiology to estimate cannabis consumption in Canada based on the metabolite 11-nor-9carboxy-delta-9-tetradydrocannabinol (THC-COOH)
 - THC-COOH is the by-product or metabolite of human consumption of cannabis containing THC
- 5 city pilot study started in March 2018; data are collected monthly (Figure 1)
- Estimating the amount of metabolite in wastewater
- Estimating drug consumption from the amount of metabolite in the wastewater, excretion rate of the metabolite per dose of THC, and potency of THC in cannabis (Equation 1)
- In partnership with Chemical Engineering department at McGill University (Montréal, Canada) for chemical analysis and technical expertise

Figure 2: Flow of cannabis metabolite per capita by month

What have we found so far? (Figure 2)

- Concentration measurements have low dispersion
- An average consumption is beginning to emerge

Canada

Statistique Canada

- Observe cannabis consumption behaviour before and after legalization

Total pure THC consumed during sample week

metabolite of

What have we found so far? (Figure 3)

Laurie Reedman, Statistics Canada

Why are we doing this?

• In October 2018 Canada legalized cannabis for non-medical use; preceded by medical legalization (2001)

- Statistics Canada launched this pilot to:
 - Measure the illegal cannabis market
 - Support the legal system and public health agencies

• If successful the project could be expanded to opioids and other drugs

• Statistical outputs could include:

- Time series tracking use of targeted drugs (opioids, cocaine, cannabis)
- Sentinel surveillance; signal indicating time and location of sudden increased consumption of a targeted drug

Figure 3: 8-month average flow of cannabis metabolite per capita

• High month to month variation

What makes this challenging?

- Degradation of metabolite in the sewer system and during analysis and storage are not well understood
- Emerging evidence that absorption of THC is affected by method of consumption (e.g. smoke vs vape)
- Excretion rates differ by cannabis product and consumption method (e.g. eating, smoking or vaping)
- Excretion rates may differ by cannabis user exposure (regular users vs inexperienced), by sex, bodyweight, etc.
- Potency of many products not known with certainty
- The size of the contributing population on any given day is unknown due to commuting, tourism, etc.
- Half-life of THC is considerably longer than most drugs...THC-COOH can last 3 to 14 days in the body
- at least 100
- Few other sources available to validate or for comparison
- opinion

What comes next?

- Doing experiments to ensure the weekly wastewater samples are representative of the month
- Exploring methods of estimating and communicating uncertainty
 - Standard error of the average across several months, as shown by the error bars in Figure 3
 - Monte Carlo (resampling) method to get a simulated distribution of errors for both the amount of metabolite and consumption of cannabis
- Examining wastewater samples for other drugs to determine if their metabolites are more stable than THC-COOH; if so and if their excretion rates are easier to model, we may find better precision in our estimates for other drugs
- Continuing the pilot to determine if there is a seasonal consumption pattern for some drugs

- Relying on one cannabis metabolite (THC-COOH) while there are
- Methods to measure uncertainty rely on assumptions or expert

