Ferroelectricity on the nanoscale has remained a subject of much fascination in condensed matter physics for the last several decades. It is well-recognized that stability of the ferroelectric state necessitates effective polarization screening, and hence screening mechanism and screening charge dynamics become strongly coupled to ferroelectric phase stability and domain behavior. We pose that in the nanoscale systems, the ferroelectric state is fundamentally inseparable from electrochemical state of the surface, leading to emergence of coupled electrochemical-ferroelectric states. I will present the results of experimental and theoretical work exploring the basic mechanisms of emergence of these coupled states including the basic theory and phase-field formulation for domain evolution. I further discuss the thermodynamics and thickness evolution of this state using analytical theory and phase-field modelling. These considerations further stimulate the development of the novel SPM modalities addressing time-dependent dynamics and chemical changes during SPM imaging. I will introduce the general data acquisition mode (GMode) of SPM, based on full data capture and subsequent information theory and physics based analysis of the data stream. I will further delineate the applications of in-situ SPM – time of flight secondary ion mass spectrometry (ToF SIMS) to map the changes in surface chemistry during tribological and local electrochemical experiments, including ferroelectric polarization switching and pressure-induced resistance changes in oxides. These analyses reconcile multiple prior studies, and set forward the predictive pathways for new generations of ferroelectric devices and applications.