

Numerical study of vaporization-controlled instability in afterburner combustion using Large Eddy Simulation

Etienne CHARLES^{1,2*},Balázs VINCZE^{1,2},Aymeric VIE³, Laurent GICQUEL²,Abel FAURE-BEAULIEU²,Thierry POINSOT^{1,4}

*lead presenter: charles@cerfacs.fr

1 CERFACS, France

2 Safran Aircraft Engines, Site de Villaroche, France

3 Laboratoire EM2C, CNRS, École CentraleSupélec, Université Paris-Saclay, France

4 Institut de Mécanique des Fluides de Toulouse, CNRS, Université de Toulouse, France

In this work, the combustion instability observed by Cross et al. [1] in the Georgia Tech post-combustion bench is studied using Large Eddy Simulation (LES) for various fuel injection conditions. In the continuity of the auto-ignition and fuel injection simulation activities performed by Mocquard [2] and Vincze et al. [3], further detailed liquid jet in crossflow injection and secondary atomization models are included in the AVBP solver [4] to better represent the fuel dispersion in steady and dynamic conditions. A preliminary non-reactive simulation of the academic reheat chamber described in Lubarsky et al. [5] shows a satisfying comparison with experimental measurements. It highlights the fuel input modulation induced by the Von-Karman (VK) vortex trail behind the bluff flame-holder. This coupling leads to a strong sinuous combustion instability in reactive conditions at the VK frequency, as experimentally evidenced by Cross et al. [1]. The amplitude of the oscillations for increasing global equivalence ratios is hence investigated and compared with the experiments. Overall, this work shows an example of a vaporization-controlled instability mechanism in liquid-fueled combustion chambers as theorized by Abramzon and Sirignano [6] and highlights the capacity of the Lagrangian two-phase LES framework to predict such phenomena.

References

- [1] Cross C et al. 'Determination of Equivalence Ratio and Oscillatory Heat Release Distributions in Non-Premixed Bluff Body-Stabilized Flames Using Chemiluminescence Imaging', 549–58. American Society of Mechanical Engineers Digital Collection, 2012.
- [2] Mocquard C. 'Simulations Aux Grandes Échelles de La Postcombustion Dans Les Moteurs d'avion de Chasse'. Thèse de doctorat, Université de Toulouse, 2024.
- [3] Vincze B et al. 'Models for Large-Eddy Simulation of Reheat Combustion'. *Proceedings of the Combustion Institute* 40, no. 1–4 (2024): 105216.
- [4] Schonfeld T, and Rudgyard M. 'Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP'. *AIAA Journal* 37, no. 11 (November 1999): 1378–85.
- [5] Lubarsky E et al 'Spray Characterization at Jet Engine Thrust Augmentor Flow Conditions', 687–99. American Society of Mechanical Engineers Digital Collection, 2009.
- [6] Abramzon, B. and Sirignano WA. 'Droplet Vaporization Model for Spray Combustion Calculations'. *International Journal of Heat and Mass Transfer* 32, no. 9 (1 September 1989): 1605–18.