Direct pore-level simulation of ammonia combustion in multi-zone porous media burners

Rishabh Puri^{1*}, Thorsten Zirwes², Oliver T. Stein¹

*Lead presenter: rishabh.puri@kit.edu

Ammonia is a promising fuel for decarbonization of the energy infrastructure. However, NH₃ exhibits poor combustion characteristics [1]. Blending with reactive fuels like H₂ can improve the flame stability of NH₃ at the expense of higher NO_x emissions [2]. Another approach is porous media combustion (PMC), where the gaseous mixture is burned in a solid matrix [3]. Heat recirculation between the upstream fuel/air and the reaction zone can improve the flame stability of NH₃ flames and enable burner operation with lower NO_x emissions. In this work, a multi-zone porous media burner is considered. The porous zones are comprised of triply-periodic minimal surface (TPMS) gydroid and diamond structures. Comprehensive sub-models for conjugate heat transfer (CHT) and radiation are integrated in an in-house 3D solver. The effects of porosity, topology and material properties of the porous structures on flame stabilisation and pollutant emissions are investigated through direct pore-level simulations (DPLS). The inlet boundary conditions are set to obtain a flame that stabilises in the TPMS-diamond structures and NH₃/air is preheated in the gyroidal section. A snapshot of the flame inside the porous structure is shown in Fig. 1.

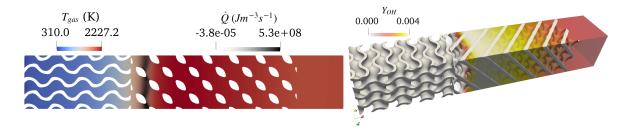


Figure 1: DPLS of ammonia/air combustion in a multi-zone porous burner. Lengthwise cut of the temperature distribution and the heat release rate in the gas phase (left), flame position visualised through the OH mass fraction (right).

References

- [1] Kobayashi et al. Science and technology of ammonia combustion. *Proc. Combust. Inst.*. 2019;37(1):109-133.
- [2] Elbaz et al. Review on the recent advances on ammonia combustion from the fundamentals to the applications. 2022;10:100053.
- [3] Vignat et al. Combustion of lean ammonia-hydrogen fuel blends in a porous media burner. *Proc. Combust. Inst.*. 2023;39(4):4195-4204.

¹ KIT-Karlsruhe Institute of Technology, Engler-Bunte-Institute, Simulation of Reacting Thermo-Fluid Systems, Karlsruhe, Germany

² University of Stuttgart, Institute for Reactive Flows, Stuttgart, Germany