Optimization of the rate rules for the large alkanes

Pengzhi Wang¹, Sirio Brunialti², Tibor Nagy^{3*}, Colin Banyon¹, Máté Papp⁴, S. Mani Sarathy², Tamás Turányi⁴, Henry J. Curran¹

*Lead presenter: p.wang2@universityofgalway.ie

- 1 Combustion Chemistry Centre, School of Biological and Chemical Sciences, Ryan Institute, MaREI, University of Galway, Galway, Ireland
- 2 Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- 3 Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, 1117, Magyar tudósok krt. 2, Budapest, Hungary
- 4 Institute of Chemistry, Eötvös Loránd University, 1117, Pázmány P. stny. 1/A, Budapest, Hungary

A consistent set of rate rules for the large alkanes reactions has been optimized and validated using the three pentane isomers, five hexane isomers, nine heptane isomers, and iso-octane. The initial mechanism of these fuels were auto-generated by a modified version of MAMOX++[1], based on the central Arrhenius curve of their prior uncertainty range, which was determined by a comprehensive review of theoretical studies of typical rate conststants in alkanes. To accelerate the optimization process, we employed the Reduction-Assisted Parameter Optimization and Mechanism Development (RAPOD) approach [2], enabling the creation of accurate reduced mechanisms via the DRGEP method [3,4]. The Arrhenius parameters (A, n, a)E) were optimized within their prior uncertainty bounds using the Optima++ code [5–7]. To address the challenge of finding a global optimum, a two-step optimization strategy was implemented to reduce the parameter space: (1) optimization of rate rules involving only primary and secondary carbon centers, followed by (2) optimization of rate rules involving tertiary carbons. Additionally, the thermodynamic data (heat of formation and entropy) of RH, R, RO₂, OOOH, and O₂OOOH were optimized within a carefully evaluated uncertainty range of each species. The two-step optimization reveals a generally good performance for these target fuels compared to the other mechanisms. The trend of the optimized rate rule constants was analysed and found to generally follow a reasonable trend: $1^{\circ} < 2^{\circ} < 3^{\circ}$, consistent with the BDE trend for C-H ($1^{\circ} > 2^{\circ} > 3^{\circ}$). The rate rules were further extended—with some necessary adjustments—to establish mechanisms for straight-chain alkanes from C₈ to C₁₄. The simulated ignition delay times reveal a clear trend: larger alkanes exhibit faster reactivity, with their reactivities beginning to converge starting from C_{11} .

References

- [1] S. Brunialti et al. Automatically generated detailed and lumped reaction mechanisms for low- and high-temperature oxidation of alkanes. Proceeding of Combustion Institution. 2023; 39(1): 335-344.
- [2] Horváth L, Dong S, Saggese C, Papp M, Curran HJ, Pitz WJ. "Mechanism reduction-assisted kinetic parameter optimization for the n-pentanol chemistry of the NUIGMech multifuel combustion mechanism" in <u>Proceedings of the European Combustion Meeting</u> 2023.
- [3] Lu T and Law CK. A directed relation graph method for mechanism reduction. Proceeding of Combustion Institution. 2005; 30(1): 1333-41.
- [4] Lu T and Law CK. Linear time reduction of large kinetic mechanisms with directed relation graph: N-heptane and iso-octane. Combustion and Flame. 2006; 144(1): 24-36.
- [5] S. K. Goitom et al. Efficient numerical methods for the optimization of large kinetic reaction mechanisms. Combustion Theory and Modelling. 2022;26(1): 1071-1097.
- [6] M. Papp, Https://respecth.Hu (2022-11-24),
- [7] T. Turányi et al. Determination of rate parameters based on both direct and indirect measurements. International Journal of Chemistry Kinetics. 2012; 44: 284-302.