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A consistent set of rate rules for the large alkanes reactions has been optimized and validated 

using the three pentane isomers, five hexane isomers, nine heptane isomers, and iso-octane. The 

initial mechanism of these fuels were auto-generated by a modified version of MAMOX++ [1], 

based on the central Arrhenius curve of their prior uncertainty range, which was determined by 

a comprehensive review of theoretical studies of typical rate conststants in alkanes. To 

accelerate the optimization process, we employed the Reduction-Assisted Parameter 

Optimization and Mechanism Development (RAPOD) approach [2], enabling the creation of 

accurate reduced mechanisms via the DRGEP method [3,4]. The Arrhenius parameters (A, n, 

E) were optimized within their prior uncertainty bounds using the Optima++ code [5–7]. To 

address the challenge of finding a global optimum, a two-step optimization strategy was 

implemented to reduce the parameter space: (1) optimization of rate rules involving only 

primary and secondary carbon centers, followed by (2) optimization of rate rules involving 

tertiary carbons. Additionally, the thermodynamic data (heat of formation and entropy) of RH, 

Ṙ, RȮ2, Q̇OOH, and Ȯ2QOOH were optimized within a carefully evaluated uncertainty range 

of each species. The two-step optimization reveals a generally good performance for these 

target fuels compared to the other mechanisms. The trend of the optimized rate rule constants 

was analysed and found to generally follow a reasonable trend: 1⁰ < 2⁰ < 3⁰, consistent with the 

BDE trend for C–H (1⁰ > 2⁰ > 3⁰). The rate rules were further extended—with some necessary 

adjustments—to establish mechanisms for straight-chain alkanes from C8 to C14. The simulated 

ignition delay times reveal a clear trend: larger alkanes exhibit faster reactivity, with their 

reactivities beginning to converge starting from C11. 
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