Turbulent Burning Rate Scaling of Hydrogen-Air Flames at Gas Turbine Conditions: Direct Numerical Simulation and Experimental Data

Martin Rieth^{1,*}, Andrea Gruber^{2,3}, Wonsik Song³, and Jacqueline H. Chen¹

*lead presenter: mrieth@sandia.gov

Hydrogen has emerged as a promising energy vector for low-carbon power generation and propulsion systems. Ensuring load-flexible power generation in the face of intermittency from renewable sources, hydrogen can seamlessly replace natural gas in this crucial task if burnt in fuel-flexible gas turbines. However, hydrogen's fast molecular diffusion induces thermodiffusive effects that alter flame front stability and significantly influence the turbulent burning rate of hydrogen-enriched flames at lean stoichiometries. These effects are amplified at elevated pressure, making accurate modeling at realistic gas turbine conditions a challenge. This study evaluates the applicability of a recently proposed scaling parameter [1], based on the ratio of the Zel'dovich (Ze) to Peclet (Pe) number, in collapsing the normalized turbulent burning rate of hydrogen-air premixed flames obtained from experimental measurements and direct numerical simulation (DNS) data, spanning a wide range of conditions. The DNS data includes various premixed hydrogen-air flames in isotropic and sheared turbulence at atmospheric and elevated pressure. Scaling results suggest that the Ze/Pe parameter augmented by parameters describing the turbulence-chemistry interaction is able to collapse experimental and numerical data across a wide range of conditions for varying pressures, turbulence intensities, and equivalence ratios. This result can help ongoing efforts to improve the accuracy of turbulencechemistry interaction (TCI) models in predicting the turbulent burning rate of thermodiffusively unstable hydrogen-enriched flames.

References

[1] Rieth, M., Gruber, A. and Chen, J.H., 2023. The effect of pressure on lean premixed hydrogen-air flames. Combustion and Flame, 250, p.112514.

¹Sandia National Laboratories, Livermore, CA, USA

²Department of Thermal Energy, SINTEF Energy Research, Trondheim, Norway

³Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway