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Reduced-order modeling (ROM) of reacting flows mitigates the high computational cost of de-
tailed chemical kinetics in DNS and LES by projecting governing equations onto low-dimensional
manifolds, with principal component analysis (PCA) being the most widely adopted technique
for identifying variance-optimal modes. However, PCA considers second-order covariance,
making it insensitive to rare, extreme-value events, such as ignition kernels, that exhibit non-
Gaussian statistics. Co-kurtosis PCA (CoK-PCA) addresses this limitation by decomposing
the fourth-order joint cumulant tensor to extract modes dominated by high kurtosis, thereby
capturing the statistical signatures of such events better. A priori analysis demonstrated that
CoK-PCA-based manifolds yield more accurate reconstructions of species concentrations and
heat-release rates under aggressive truncation than standard PCA [1, 2].

In this study, we perform a posteriori analysis of the CoK-PCA-based ROM for auto-ignition in
a homogeneous reactor. We evolve the reduced ODE system in the PC space using (i) a standard
ODE solver with pre-trained neural network source term closures and (ii) an integrated neural
ODE [3] solver that learns time integration during training. Our results show that the CoK-
PCA manifold robustly reproduces ignition delay times and reaction-zone profiles, particularly
heat release rates, and that the neural ODE approach further minimizes error accumulation over
multiple steps. These findings highlight the potential of CoK-PCA-based manifolds and their
coupling with neural ODE integration for embedding efficient and accurate chemistry in large-
scale, parallel reacting-flow simulations.
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