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Common data-driven models for predicting chemical reacting flows suffer from error 

accumulation, divergence from expected physical behavior, and poor generalizability. To 

address this, we present Physics-informed hybrid Multiscale and Partitioned Network 

(PiMAPNet), a physics-informed machine learning (ML) strategy for generating multi-scale 

and multi-physics predictions by integrating low-resolution physics-based models with neural 

networks. PiMAPNet combines a state-space decomposition of hydrodynamic (velocity and 

pressure) and thermochemical (temperature and species mass fractions) quantities for improved 

predictions of multiphysical processes with a mixture-of-experts (MoE) architecture that 

partitions the thermochemical state-space. We demonstrate this ML framework on a reacting 

hydrogen/air jet flame configuration. Results demonstrate that both the purely data-driven ML 

model and a traditional physics-informed ML approach could not represent the entire state-

space, which resulted in unphysical behavior in long-term predictions. In contrast, the MoE-

based PiMAPNet achieves higher accuracy and demonstrates improved robustness over 

extended time windows and out-of-distribution scenarios. We show that PiMAPNet offers 

faster inference compared to numerical simulations with comparable accuracies in multiple 

physical quantities. 
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