Model validation and numerical analysis of the combustion and NOx characteristics of ammonia/methane-air premixed flames in a model gas turbine combustor

Medhat A. Nemitallah^{1,2,*} and Mohammed El-Adawy¹

* lead presenter: medhatahmed@kfupm.edu.sa

This research numerically analyzes the combustion and NOx emissions characteristics of ammonia/methane (NH₃/CH₄) air premixed swirl flames in a model combustor for clean energy production in gas turbines. Two equivalence ratios (ϕ = 1 and 1.2) were investigated at varying ammonia doping ratios (NH₃% by vol.) of 20%, 30%, 40%, and 50%. The chemistry of the combustion process is comprehensively addressed utilizing a detailed mechanism, featuring 957 reaction steps and 128 species, integrated within the flamelet generated manifold (FGM) model framework. The model was validated in terms of temperature and species fields with very good agreements. The results illustrated that ammonia doping minimally affects the flow field but significantly impacts combustion characteristics. Increasing ammonia fraction lowers peak temperature, CO, and CO₂ emissions, while NOx initially rises and then decreases. Increasing NH₃% from 20% to 40% at ϕ = 1 reduced the maximum CO mass fraction by 32.25%. NOx (NO, N₂O, and NO₂) concentrations rose by 9.46% when the ammonia fraction increased from 20% to 30% at ϕ = 1.0, but further increasing NH₃% to 40% resulted in a 3.72% reduction in NOx levels. Overall, the highest NOx emissions were consistently observed at 30%NH₃ and ϕ = 1.0.

¹ Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia ² Aerospace Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia