## **GPU-Accelerated Direct Numerical Simulation** of the Sandia Flame A

Edoardo Forti\*<sup>1</sup>, Marco Fratini<sup>1</sup>, Agostino Neri<sup>2</sup>, Mauro Valorani<sup>1</sup>, Fulvio Stella<sup>1</sup>, Matteo Bernardini<sup>1</sup>, Pietro Paolo Ciottoli<sup>1</sup>

In this work, the extension of STREAmS-2 (Supersonic TuRbulEnt Accelerated Navier-Stokes Solver[1]), a GPU-accelerated high-fidelty solver for Direct Numerical Simulations (DNS) of compressible flows, is presented. Developed at Sapienza, University of Rome, and originally tailored for canonical wall-bounded turbulent flows in cartesian geometries involving a single species, STREAmS-2 has been recently enhanced to support multicomponent and reactive flow simulations. The updated framework incorporates models for evaluating gas mixture viscosity [2], thermal conductivity [3], and molecular diffusion [4]. Chemical source terms are computed using Arrhenius-type kinetics, and time integration is performed through explicit and implicit schemes, employing an operator splitting technique [5]. The extended solver has been validated through a two-step process: first against lower-dimensional benchmark cases [6] (e.g. 1D reactive shock tube), and subsequently by simulating the well-characterized Sandia-A flame [7], a standard reference case in combustion research [8]. Furthermore, scalability tests were performed to evaluate strong and weak scaling performance both considering only multispecies transport and diffusion, and with full chemical kinetics, assessing the capability of the code to efficiently exploit modern HPC architectures despite the increased computational complexity.

## References

- [1] Bernardini M et al. STREAmS-2.0: Supersonic turbulent accelerated Navier-Stokes solver version 2.0. *Computer Physics Communications*. 2023;285.
- [2] Wilke, CR. A viscosity equation for gas mixtures. *The Journal of Chemical Physics*. 1950;18:517–519
- [3] Mathur, S et al. Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. *Molecular Physics*. 1967;12:569–579
- [4] Hirschfelder, JO et al. Molecular theory of gases and liquids. *Journal of Polymer Science*. 1955;17:116–117
- [5] Sportisse B. An analysis of operator splitting techniques in the stiff case. *Journal of Computational Physics*. 2000;161
- [6] Ferrer PJM et al. A detailed verification procedure for compressible reactive multicomponent Navier-Stokes solvers. *Computers & Fluids*. 2014;89:88-110.
- [7] Barlow RS et al. Sandia/ETH-Zurich CO/H2 /N2 Flame Data Release 1.1. 2002; https://api.semanticscholar.org/CorpusID:100315714.
- [8] Ciottoli PP et al. Large Eddy Simulation on the Effects of Pressure on Syngas/Air Turbulent Non-premixed Jet Flames. *Combustion Science and Technology*. 2020;192:1963–1996.

<sup>\*</sup>Lead presenter edoardo.forti@uniroma1.it

<sup>&</sup>lt;sup>1</sup> Sapienza, Univ. of Rome, Department of Mechanical and Aerospace Engineering, Italy

<sup>&</sup>lt;sup>2</sup> European Space Agency, Frascati (RM), 00044, Italy