On the unsteady response of non-premixed flamelet structures to time-varying curvatures

F. Rivadeneira^{1*}, F. Huenchuguala¹, A. Scholtissek², C. Hasse², H. Olguin¹

Curvature can significantly modify flamelet structures and stability [1–4]. While several studies have focused on flamelets subject to steady curvature profiles, the influence of time-varying curvatures, $\kappa(\tau)$, has received little attention. In this work, the response of an ethanol non-premixed flamelet to several prescribed uniform $\kappa(\tau)$ is studied by means of numerical simulations. Flamelet equations for chemical species, temperature and the gradient of the mixture fraction are solved [4,5], using a flame with $\kappa=0$ as the initial solution. High positive and negative target curvatures below the extinction limits are imposed either i) suddenly or ii) through linear changes applied at different rates, and then held constant. For $\kappa>0$, the flames continue burning after i) and ii). On the other hand, when $\kappa<0$, extinction occurs if the curvature is increased too fast. The contributions of the different terms in the flamelet equations are evaluated and analyzed in order to explain the reported results.

References

- [1] Xu H, Hunger F, Vascellari M and Hasse C. A consistent flamelet formulation for a reacting char particle considering curvature effects. *Combustion and Flame*. 2013;160: pp. 2240–2558.
- [2] Xuan Y, Blanquart G, Mueller ME. Modeling curvature effects in diffusion flames using a laminar flamelet model. *Combustion and Flame*. 2014;161: pp. 1294–1309.
- [3] Scholtissek A, Dietzsch F, Gauding M and Hasse C. In-situ tracking of mixture fraction gradient trajectories and unsteady flamelet analysis in turbulent non-premixed combustion. *Combustion and Flame*. 2017;175: pp. 243–258.
- [4] Scholtissek A, Pitz RW and Hasse C. Flamelet budget and regime analysis for non-premixed tubular flames. *Proceedings of the Combustion Institute*. 2017;36: pp. 1349–1356.
- [5] Olguin H, Scholtissek A, Gonzalez S, Gonzalez F, Ihme M, Hasse C and Gutheil E. Closure of the scalar dissipation rate in the spray flamelet equations through a transport equation for the gradient of the mixture fraction. *Combustion and Flame*. 2019;208:pp. 330–350.

^{*}Lead presenter: francisco.rivaden.13@sansano.usm.cl

¹ Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Chile;

² Institute for Simulation of reactive Thermo-Fluid Systems, TU Darmstadt, Germany