

Optimization of ammonia combustion chemistry using NH₃ and NH₃/H₂ combustion experimental and theoretical data

S. Girhe*, R. Langer, F. Loffredo, H. Pitsch *lead presenter: s.girhe@itv.rwth-aachen.de Institute for Combustion Technology, RWTH Aachen University, Germany

Ammonia (NH₃) stands as a pivotal player in the global shift toward carbon-free energy systems, yet its low reactivity suggests exploring blends with high-reactivity components such as hydrogen (H₂). Reliable chemical kinetic models are crucial for advancements in NH₃-based combustion technologies. Our prior work [1] comprehensively evaluated several literature models using extensive experimental data, revealing their limitations in accurately predicting combustion behavior across diverse conditions, underscoring the need for further model refinement.

To address this, we optimized ammonia combustion chemistry using an extensive amount of data from well-controlled experiments (indirect data), including laminar flame speeds, ignition delay times, and species concentrations measured in flow reactors, jet-stirred reactors, and shock tubes, as well as rate coefficient data (direct data) from measurements and theoretical calculations. The NH₃ and NH₃/H₂ combustion experimental database from [1] was expanded with recent literature measurements and our newly measured data, targeting conditions where existing models underperformed, including shock tube ignition delay times for NH₃/H₂ mixtures and flame speeds in O₂-enriched flames. A large dataset of relevant rate coefficients was also compiled from the literature. We employed our novel optimization methodology [2], which optimizes all three Arrhenius parameters of sensitive reactions in their principal component space, and has proven more accurate and robust than conventional approaches. The objective function employs a curve-matching score metric [1, 4] to quantify how closely model predictions align with experimental data in both magnitude and curve shape. Initially developed for indirect data, this approach was extended here to include direct data, ensuring an integration of all available data sources. Starting with the Zhu et al. [3] model, selected for its superior predictive performance in our prior work [1], we developed an optimized NH₃ kinetic model with a significantly improved predictive accuracy across diverse conditions. The optimization process, by modifying rate parameters, revealed globally sensitive reactions, as parameter changes reflected their influence across the dataset's conditions, thus identifying key pathways driving NH₃ combustion and prioritizing reactions for future model refinement.

References

- [1] Girhe S, Snackers A, Lehmann T, Langer R, Loffredo F, Glaznev R, Beeckmann J, Pitsch H. Ammonia and ammonia/hydrogen combustion: Comprehensive quantitative assessment of kinetic models and examination of critical parameters. Combustion and Flame. 2024;267:113560.
- [2] Girhe S, Langer R, Loffredo F, Pitsch H. A principal component-based approach for kinetic model optimization. Proceedings of the Combustion Institute. 2025; submitted.
- [3] Zhu Y, Curran HJ, Girhe S, Murakami Y, Pitsch H, Senecal K, Yang L, Zhou CW. The combustion chemistry of ammonia and ammonia/hydrogen mixtures: A comprehensive chemical kinetic modeling study. Combustion and Flame. 2024;260:113239.
- [4] Ramalli E, Dinelli T, Nobili A, Stagni A, Pernici B, Faravelli T. Automatic validation and analysis of predictive models by means of big data and data science. Chemical Engineering Journal. 2023;454:140149.