

Can AI Function as a Virtual Combustion Researcher?

Vansh Sharma*¹, Venkat Raman¹ *lead presenter: vanshs@umich.edu 1 University of Michigan, Ann Arbor, USA

Combustion is ubiquitous in systems as diverse as gas turbines [1], rotating detonation engines [2], and scramjets, yet its complexity continues to challenge both experiment and simulation. Over recent decades, high fidelity numerical solvers [3]—either for the full Navier-Stokes equations or reduced order models—have provided critical insight into combustion phenomena observed in the laboratory. However, setting up such simulations requires tens to hundreds of human-hours per study for tasks such as defining geometry, boundary conditions, mesh resolution, solver parameters, and post-processing routines for large, high-dimensional datasets [4]. In this work, we present a natural-language—driven workflow that leverages transformer-based language models [5] to automate end-to-end numerical combustion investigations. Given a simple researcher prompt, the system (1) generates a high-level experimental plan grounded in domain knowledge; (2) translates that plan into simulation scripts, domain setup, and solver configurations; (3) orchestrates distributed solver runs while monitoring for and recovering from runtime errors; and (4) extracts, analyzes, and summarizes key results into concise scientific insights. We test the framework on canonical numerical combustion benchmarks showing that AI-generated setups reproduce manually configured results within established tolerances, while reducing total setup-to-analysis turnaround. By integrating chain-of-thought reasoning [6] with automated task orchestration, the current approach preserves physical fidelity, accelerates parametric sweeps, and empowers researchers to explore novel hypotheses with minimal coding overhead. This work represents a step toward truly AI-assisted discovery in reacting-flow science, democratizing access to high-performance combustion modeling and fostering human creativity.

References

- [1] Noble, David, et al. "Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future." Journal of Engineering for Gas Turbines and Power 143.4 (2021): 041002.
- [2] Raman, Venkat, Supraj Prakash, and Mirko Gamba. "Nonidealities in rotating detonation engines." Annual Review of Fluid Mechanics 55.1 (2023): 639-674.
- [3] Myers, Andrew, et al. "AMReX and pyAMReX: Looking beyond the exascale computing project." The International Journal of High Performance Computing Applications 38.6 (2024): 599-611
- [4] Sharma, Vansh, and Venkat Raman. "A reliable knowledge processing framework for combustion science using foundation models." Energy and AI 16 (2024): 100365.
- [5] Ashish, Vaswani. "Attention is all you need." Advances in neural information processing systems 30 (2017): I.
- [6] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837.