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Machine Learning (ML) is making a profound impact across a wide range of disciplines, from image and
speech recognition to quantum computing. Within fluid mechanics, ML has led to significant progress in
areas such as experimental diagnostics, numerical simulations, flow control, and weather forecasting. In
the realm of turbulence and combustion modelling, numerous approaches have been explored, achieving
remarkable success in different applications [1, 2].
Recently, ML-based methodologies have attracted growing interest as tools to investigate the physics
of fluid mechanics systems [3], particularly in scenarios where traditional approaches face limitations.
For instance, conventional statistical methods such as joint probability density functions might become
unfeasible for highly dimensional datasets due to the need for unreasonably large volumes of data to
obtain statistical convergence.
In this work, we apply Convolutional Neural Networks (CNNs) [4] to analyse various physical aspects
of laminar and turbulent premixed hydrogen/air and methane/air flames. By training CNNs on data
from turbulent methane flames at different Reynolds numbers (Re), filtered with the same filter over
Kolmogorov scale ratio ∆/η, we observe that subgrid-scale flame wrinkling becomes independent of
Re at sufficiently high values. For both laminar and turbulent premixed hydrogen flames, we find that
the reaction rate can be accurately parametrised using only the progress variable C, provided that a
three-dimensional neighbourhood of the C field is considered through convolution. This contrasts with
classical pointwise tabulation methods, which typically require a second variable, such as the mixture
fraction Z, to accurately model the reaction rate in lean hydrogen flames. Moreover, we identify the
minimal spatial extent of the 3D neighbourhood required for accurate parametrisation, revealing not
only that reaction rate information is inherently encoded in the C-field, but also the characteristic scale
of the structures conveying this information. These findings demonstrate that ML-based methods can be
effectively employed to uncover and interpret complex flame features.
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