Recent advances in Lattice-Boltzmann modeling of reactive flows

Pierre Boivin^{1*}, Song Zhao¹

*Lead presenter: pierre.boivin@univ-amu.fr

Lattice-Boltzmann numerical schemes [1] has led to a large number of successful applications in the field of reactive flows.

An overview of these applications for combustion will be presented, from DNS to large eddy simulations, showing that LBM is now validated and mature for most configurations involving gaseous combustion.

In particular, the ability of the method to accurately transport acoustic waves and thus predict thermoacoustic instabilities will be stressed [2, 3]. Stability and conservativity will be show-cased by studying detonations [4]. A Lattice-Boltzmann compatible radiation model will also be presented. Finally, a large-eddy simulation of a large industrial burner will be presented, validated with experimental data.

References

- [1] S. A. Hosseini, P. Boivin, D. Thévenin, I. Karlin, Lattice boltzmann methods for combustion applications, Progress in Energy and Combustion Science 102 (2024) 101140.
- [2] K. Bhairapurada, B. Denet, P. Boivin, A lattice-boltzmann study of premixed flames thermo-acoustic instabilities, Combustion and Flame 240 (2022) 112049.
- [3] S. Zhao, K. Bhairapurada, M. Tayyab, R. Mercier, P. Boivin, Lattice-boltzmann modelling of the quiet and unstable preccinsta burner modes, Computers and Fluids 260 (2023) 105898.
- [4] G. Wissocq, S. Taileb, S. Zhao, P. Boivin, A hybrid lattice boltzmann method for gaseous detonations, Journal of Computational Physics 494 (2023) 112525.

¹ Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France. Recent progress in