

Flame stability of liquid ammonia combustion under intermittent fuel supply condition

Ruixiang Wang*, Zhenhua An, Jiangkuan Xing, Ryoichi Kurose *Lead presenter: wang.ruixiang.85f@st.kyoto-u.ac.jp Department of Mechanical Engineering and Science, Kyoto University, Kyoto, Japan

Liquid ammonia combustion has received a lot of attention in recent years ^[1]. In this study, quasi-direct numerical simulations are performed to investigate flame stability of liquid ammonia/hydrogen combustion when fuel delivery becomes intermittent because of flash boiling in the fuel pipeline. The simulations are treated with the Eulerian–Lagrangian framework, and the interaction between gaseous phase and droplets is considered using two-way-coupled method ^[2]. The reaction is considered using a detailed reaction mechanism developed by Shrestha et al. ^[3]. The governing equations are solved in OpenFOAM with a second-order finite-volume scheme on a high-resolution mesh sufficient to resolve the flame thickness ^[4].

Two operating stages are analyzed. Stage 1 (S1) is a steady liquid spray at global equivalence ratio $\phi=1.0$. Stage 2 (S2) represents conditions after flash boiling: all droplets vaporize before entry into computational domain, which raises the inlet mass flow and cools the mixture, creating a clearly intermittent fuel supply while the total equivalence ratio remains unchanged. The results indicate that the rapid liquid-to-gas transition in S2 brings significant instability of fuel supply. Compared with S1, the flame front exhibits larger flame curvature, driven by local temperature drops and fluctuations in equivalence ratio caused by flash boiling. These fluctuations in fresh mixture equivalence ratio can temporarily expand or narrow the reaction zone. As a consequence, changes in heat release rates may require higher total equivalence ratios to maintain sustained combustion, thereby narrowing the stable operating window.

This study delivers a high-resolution simulation of how flash boiling in the fuel pipeline influences liquid ammonia flame structure, flammable regions, and extinction risk. The proposed conclusions could provide practical guidance for designing liquid ammonia gas turbine combustors.

References

- [1] Z. An, J. Xing, and R. Kurose, "Recent progresses in research on liquid ammonia spray and combustion: A review," Applications in Energy and Combustion Science 20, 100293 (2024).
- [2] Z. An, J. Xing, and R. Kurose, "Numerical study on the phase change and spray characteristics of liquid ammonia flash spray," Fuel 345, 128229 (2023).
- [3] K.P. Shrestha, C. Lhuillier, A.A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, and F. Mauss, "An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature," Proceedings of the Combustion Institute 38(2), 2163–2174 (2021).
- [4] Z. An, R. Wang, J. Xing, M. Zhang, and R. Kurose, "An experimental and numerical investigation of a liquid ammonia jet flame: spray characteristics close to nozzle and flame structure," Journal of Ammonia Energy 3(1), (2025).