Numerical Modeling of Iron Powder Combustion

van Oijen JA*, Mi XC

*Lead presenter: j.a.v.oijen@tue.nl

Eindhoven University of Technololgy, The Netherlands

Metal fuels receive a lot of attention recently as they enable storage and transport of energy from intermittent renewable sources without carbon dioxide emissions [1]. Iron powder is particularly interesting because it is non-toxic and abundantly available, but most of all because its combustion product, iron oxide, is a similar powder that can be easily captured from the exhaust stream in order to be recycled. The iron oxide is reduced back to iron using renewable electricity or hydrogen, closing the cycle.

Numerical models can help us understand the complex phenomena occurring in iron combustion processes and assist in the design of combustion equipment for iron powder. In this presentation, we will discuss the modeling of combustion of single iron particles [2, 3], as well as flame propagation in iron aerosols [4, 5] and combustion of iron powder in turbulent flow [6]. The effect of fuel-air mixture properties and modeling assumptions on relevant combustion characteristics such as ignition temperature, burning rate, and flame speed will be discussed.

References

- [1] Bergthorson JM, Goroshin S, Soo MJ, Julien P, Palecka J, Frost DL, Jarvis DJ. Direct combustion of recyclable metal fuels for zero-carbon heat and power. *Appl. Energy*. 2015;160:368–382.
- [2] Mi X, Fujinawa A, Bergthorson JM. A quantitative analysis of the ignition characteristics of fine iron particles. *Combust. Flame*. 2022;240:112011.
- [3] Thijs LC, Van Ende MA, van Oijen JA, de Goey P, Mi X. A numerical study of internal transport in oxidizing liquid core–shell iron particles. *Combustion and Flame*. 2025;271:113826
- [4] Hazenberg T, van Oijen JA, Structures and burning velocities of flames in iron aerosols. *Proc. Combust. Inst.* 2021;38(3):4383–4390.
- [5] Ramaekers WJS, Hazenberg T, Thijs LC, Roekaerts DJEM, van Oijen JA, de Goey LPH. The influence of radiative heat transfer on flame propagation in dense iron-air aerosols. *Combust. Flame*. 2025;272:113848.
- [6] Hemamalini S, Cuenot B, van Oijen J, Mi XC. Numerical study probing the effects of preferential concentration on the combustion of iron particles in a mixing layer. *Proceedings of the Combustion Institute*. 2024;40(1-4):105617.