Turbulent Lean Premixed Hydrogen Flames at High Pressure and High Temperature

Sofiane Al Kassar^{1,*}, Sara Cantagalli², William Lauder¹, Geveen Arumapperuma¹, Antonio Attili¹ *Lead presenter: s.al-kassar@sms.ed.ac.uk

Premixed hydrogen flames are prone to thermodiffusive instabilities, leading to super-adiabatic temperatures, enhanced reactivity, and extinction in highly curved flame regions. These instabilities significantly increase laminar flame speed [1, 2] and interact synergistically with turbulence to amplify these effects in the turbulent regime [3, 4]. This study uses Direct Numerical Simulations (DNS) to investigate the effect of elevated pressure and temperature on lean premixed hydrogen flames, with a focus on the interaction between turbulence, thermodiffusive instabilities, and differential diffusion.

Three DNS of premixed lean hydrogen/air jet flames are compared: one at ambient conditions (1 atm, 298 K), one at gas-turbine conditions (20 atm, 700 K) and one at high pressure and ambient temperature (20 atm, 298 K). The three cases share the same jet Reynolds number (Re=11,200) and similar Karlovitz number ($Ka\simeq90$) to isolate the effect of pressure and temperature. Pressure enhances thermodiffusive effects, while temperature tends to weaken them [1, 2]. By comparing flames at different temperatures under the same high-pressure condition to an ambient reference case, this setup enables the investigation of how pressure influences flame—turbulence interactions across varying levels of thermodiffusive effects.

Despite negligible variations in one-dimensional and two-dimensional flames between ambient and gas-turbine conditions, the turbulent cases exhibit some differences in flow-field structures and mixture fraction deviation from the one-dimensional solution, affecting the evolution of the flame speed along the flame. These observations suggest that a combined increase in pressure and temperature can alter the interaction between turbulence and the flame structure, and that extrapolating from lower-dimensional laminar configurations to turbulent three-dimensional flames requires caution.

References

- [1] Berger, L., Attili, A., and Pitsch, H., "Intrinsic instabilities in premixed hydrogen flames: Parametric variation of pressure, equivalence ratio, and temperature. Part 1 Dispersion relations in the linear regime," *Combustion and Flame*, Vol. 240, 2022, pp. 111935.
- [2] Berger, L., Attili, A., and Pitsch, H., "Intrinsic instabilities in premixed hydrogen flames: parametric variation of pressure, equivalence ratio, and temperature. Part 2 Non-linear regime and flame speed enhancement," *Combustion and Flame*, Vol. 240, 2022, pp. 111936.
- [3] Berger, L., Attili, A., and Pitsch, H., "Synergistic interactions of thermodiffusive instabilities and turbulence in lean hydrogen flames," *Combustion and Flame*, Vol. 244, 2022, pp. 112254.
- [4] Berger, L., Attili, A., Gauding, M., and Pitsch, H., "Effects of Karlovitz number variations on thermodiffusive instabilities in lean turbulent hydrogen jet flames," *Proceedings of the Combustion Institute*, Vol. 40, No. 1, 2024, pp. 105219.

¹ School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

² Dipartimento di Ingegneria Civile e Industriale, Universita' di Pisa, 56122 Pisa, Italy