Physics-based constrained reduced-order modelling of reacting flows

Muhammad Azam Hafeez^{1,2,*}, Alberto Procacci^{1,2}, Axel Coussement^{1,2}, Alessandro Parente^{1,2,3}

- *lead presenter: <u>muhammad.azam.hafeez@ulb.be</u>
- ¹ Aéro-Thermo-Mechanics Department, Université Libre de Bruxelles, Av. Franklin Roosevelt 50, Bruxelles, 1050, Belgium
- ² Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Université Libre de Bruxelles and Vrije Universiteit Brussel, Pleinlaan 2, Bruxelles, 1050, Belgium
- ³ WEL Research Institute, Avenue Pasteur, 6, Wavre, 1300, Belgium

Reduced-order models, incorporating proper orthogonal decomposition (POD) for dimensionality reduction and Gaussian process regression (GPR) for nonlinear regression, have significantly enhanced the computational analysis of complex combustion systems [1]. However, such surrogate models can yield physically inconsistent predictions, such as negative mass fractions. The linear transformation involved in dimensionality reduction via POD complicates the integration of underlying physical laws, while GPR lacks intrinsic constraints. This work presents a physics-based surrogate modelling framework that employs low-cost singular value decomposition (lcSVD) [2] to downsample high-dimensional data, which helps retain the original data's physical information in the reduced space and supports accurate, efficient reconstruction in the original space. To ensure physically consistent predictions, we embed the structure of the time-dependent, nonlinear Navier-Stokes and continuity equations into the GPR kernel. A linearized backward Euler time-stepping scheme [3] is incorporated to enforce species mass conservation directly within the regression process. We validate the proposed methodology by predicting unexplored thermo-chemical states of one-dimensional unsteady laminar NH₃/H₂ flames, with variations in equivalence ratio, H₂ molar fraction in the fuel stream, and inlet temperature. Results show that the model effectively enforces mass conservation while maintaining high predictive accuracy, highlighting its potential for reliable modelling of reacting flows.

References

- [1] G. Aversano, M. Ferrarotti, and A. Parente, "Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations," Proceedings of the Combustion Institute, vol. 38, no. 4, pp. 5373–5381, Jan. 2021, doi: 10.1016/J.PROCI.2020.06.045.
- [2] Hetherington, A., & Le Clainche, S., "Low-cost singular value decomposition with optimal sensor placemen," (2023), arXiv preprint arXiv:2311.09791.
- [3] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear partial differential equations. *Journal of Computational Physics*, 357:125–141, 2018.