Combustion Explicitly Filtered Large-Eddy Simulation: A novel approach to multi-species LES

Ada Béroudiaux ^{1,2}*, Luc Vervisch ¹, Pascale Domingo ¹

- *Lead presenter: ada.beroudiaux@insa-rouen.fr
- ¹ CORIA-CNRS, Normandie Université, INSA Rouen, France
- ² Safran Tech, Magny-Les-Hameaux, 78772, France

Large-Eddy Simulation is largely employed in combustion for its predictability and has proven accurate for simulating a wide range of cases. To dampen the smallest scales that cannot be resolved at the mesh size, an additional viscous term is added to the resolved equations. However this method entails a risk of over- or under-estimating the appropriate level of subgrid-scale viscosity. More specifically, when applied to a scalar field subjected to differential diffusion, the accurate representation of transport phenomena is jeopardized.

Significant progress has been achieved in the mathematical development of constrained and adaptive optimization frameworks for the automated calculation of explicit forward and direct-inverse discrete filter coefficients tailored to a given filter transfer function [4]. Along these lines, this paper introduces a novel approach to LES of reactive flows by leveraging these filters to capture flame dynamics on computational grids coarser than the flame thickness.

The proposed strategy involves removing the unresolved high frequency component of the scalar fields by a relaxation term $(\bar{\rho}\bar{\phi}-\bar{\rho}\bar{\phi})/\tau_{\Delta}$. Here, $\bar{\rho}\bar{\phi}$ is the explicitly filtered density weighted scalar and τ_{Δ} is a characteristic relaxation time that depends on the unresolved wrinkling of the flame front. This regularization makes the signal converge toward its filtered value to ensure that the scalar field remains resolved at the filter scale Δ . A method for estimating the time scale parameter τ_{Δ} is also proposed, based on Germano's dynamic procedure [1]. The chemical source terms are modeled using a deconvolution approach [2,3]. It is also discussed how usual sub-grid scale models are recovered from specific calibration of τ_{Δ} , as for instance eddy-diffusivity with τ_{Δ} scaling as $M_{\Delta}^2/(k_{SGS}^{1/2}\Delta)$, with M_{Δ}^2 being the second moment of the filter.

References

- [1] M. Germano. Turbulence: the filtering approach. J. Fluid Mech. 1992;238:325-336.
- [2] J. Mathew. Large Eddy Simulation of a premixed flame with approximate deconvolution modeling. *Proc. Combust. Inst.* 2002;29:1995-2000.
- [3] P. Domingo and L. Vervisch. Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. *Proc. Combust. Inst.* 2015;25:3219-3224.
- [4] Z. Nikolaou, L. Vervisch, and P. Domingo, An optimisation framework for the development of explicit discrete forward and inverse filters. *Comput. Fluids*. 2023;255