Modeling 3D effects in iron-air combustion with 1D code

C.E.A.G. van Gool¹*, J.A. van Oijen¹, L.P.H. de Goey²

*Lead presenter: c.e.a.g.v.gool@tue.nl

Recently, a lot of research on metal fuels is conducted [1, 2] Especially, the use of iron as an alternative, carbon free, energy carrier is considered. Even though the idea of combusting metals is not a new concept, using it as a replacement for fossil fuels is. The combustion of iron particle is quite different from the combustion of gaseous fuels. As such, more research is needed for a better understanding.

Current studies have provided significant insight into the physics of flat aerosol flames [3, 4, 5]. However, practical flames are usually modified by curvature and flow effects. To identify the extend of flow strain effects, counterflow experiments are often used. Like in gaseous flames, when studying counterflow flames, an interaction between preferential diffusion and flame stretch will influence the flame structures. However, for iron dust flames an additional component comes into play, the inertia of the particles. The situation becomes even more complicated when a particle distribution is used instead of monodispersed particles. To study the combined effects of preferential diffusion, particle inertia and flame stretch flow strain for a dispersed flow, a quasi 1D model is developed [6]. In the presentation we will discuss how 3D effects impact the 1D flame structure of iron dust flames.

References

- [1] Mignard D. and Pritchard C., A review of the sponge iron process for the storage and transmission of remotely generated marine energy, Int. J. Hydrog. Energy, 2007, 5039-5049
- [2] Bergthorson J M. et al., Direct combustion of recyclable metal fuels for zero-carbon heat and power, Appl. Energy, 2015, 368-382
- [3] Hazenberg, T. and van Oijen, J. A., Structures and burning velocities of flames in iron aerosols, 2021, Proceedings of the Combustion Institute 38(3), 4383-4390.
- [4] Ravi, A. et al., Flame structure and burning velocity of flames propagating in binary iron aerosols, 2023, Proceedings of the Combustion Institute 39(3), 3573-3581
- [5] van Gool, C. E. A. G. et al., Particle Equilibrium Composition model for iron dust combustion, 2023 Applications in Energy and Combustion Science, 13
- [6] van Gool, C. E. A. G. et al., Numerical determination of iron dust laminar flame speeds with the counter-flow twin-flame technique, 2024, Combustion and Flame, 266

¹ Eindhoven University of Technology, The Netherlands