

## Accurate Rate Coefficients for NH<sub>2</sub> + n-Butanol Reactions: A Theoretical Basis for Ammonia–Alcohol Combustion Mechanisms

Zimu Wang<sup>1\*</sup>, Yueying Liang<sup>1</sup>, Liang Yu<sup>1</sup>, Xingcai Lu<sup>1</sup>
\*lead presenter: wangzimu@sjtu.edu.cn
1 Key Laboratory for Power Machinery and Engineering of M. O. E., Shanghai Jiao Tong University, Shanghai 200240, P.R. China

n-Butanol, a second-generation biofuel, is a promising reactive green additive for blending with ammonia in advanced combustion engines, with potential to mitigate greenhouse gas emissions. In ammonia-based fuel blends, H-atom abstraction reactions by NH2 radicals play a key role in the overall combustion kinetics. However, due to the lack of direct experimental and theoretical investigations, the rate constants for these reactions involving n-butanol have typically been estimated by analogy with lower chain alcohols or alkanes. In this study, the kinetics of H-atom abstraction reaction from n-butanol by NH<sub>2</sub> radicals are systematically studied using high-level quantum chemical methods. Geometries and vibrational frequencies of all relevant species were obtained at the OCISD(T)/CBS//M06-2X/6-311++G(d,p) level, while single-point energies were computed using QCISD(T)/cc-pVDZ and QCISD(T)/cc-pVTZ levels with basis set extrapolation corrections via MP2/cc-pVDZ, MP2/cc-pVTZ, and MP2/cc-pVQZ methods. One-dimensional hindered rotor potentials were obtained with 10° increment at the M06-2X/ccpVTZ level. High-pressure limit rate constants for all reaction channels were calculated using conventional transition state theory coupled with Master Equation System Solver (MESS) over the temperature range of 300-2000 K. The results provide reliable theoretical data for constructing detailed kinetic mechanism of the ammonia/n-butanol fuel system, supporting their application in engine simulations, emission reduction strategies, and sustainable fuel development.