Influence of vortex-detaching induced acoustics on freely premixed propagating flames under confinement

Rodríguez-Gutiérrez D¹*, Gómez-Miguel R¹, Fernández-Tarrazo E², Sánchez-Sanz M²

- *Lead presenter: rdguezgd@inta.es
- ¹ Instituto Nacional de Técnica Aeroespacial, Spain
- ² Universidad Carlos III de Madrid, Spain

Dynamics of freely propagating flames under confinement are known to be highly non-linear as this kind of flame are very responsive to their own flame intrinsic instabilities[1]. The non-linearities of the problem are aggravated under the presence of small amplitude pressure (acoustic) waves, which can induce constructive interactions notably conditioning the combustion process[2,3].

The resolution of these kind of problems requires dealing with a wide range of scales with temporal dependence with makes numerical simulations computationally expensive. The most extensively used problem closure is settling a domain truncation at the caavity or chamber exit so that all computational resources can be used for the resolution of the inner flow. However, previous works have demonstrated that phenomena happening in the outer flow, such as: vortex detaching, shear layers or pulsating jets due to unsteadiness of the exhaust mass flow rate can definitely have a strong influence on the combustion process inside the chamber, even with a boundary condition that properly models the acoustics.

In this work, flame propagation inside an slender chamber discharging to a stagnant surrounding atmosphere is numerically solved, exploring the different mechanisms that induce the acoustics and evaluating how this acoustic energy is transferred upstream so that the dynamics of the flame propagation are changed.

References

- [1] Fernández-Galisteo D, Kurdyumov VN, Ronney PD. Analysis of premixed flame propagation between two-closely-spaced parallel plates. *Combustion and flame*. 2018;190:133-145.
- [2] Veiga-López F, Martínez-Ruiz D, Fernández-Tarrazo E, Sánchez-Sanz M. Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end. *Combustion and flame*. 2019;201:1-11.
- [3] Jiménez C, Fernández-Galisteo D, Kurdyumov VN. Flame-acoustics interaction for symmetric and non-symmetric flames propagating in a narrow duct from an open to a closed end. *Combustion and flame*. 2021;225:499-512.
- [4] Carlson JR. Inflow/outflow boundary conditions with applications to FUN3D. *NASA Tech. Rep. TM-2011-217181*. 2011.
- [5] Poinsot TJ, Lelef SK. Boundary conditions for direct simulations of compressible viscous flows. *Journal of Computational Physics*. 1992;101(1):104-129.