Modelling Local Extinction in Turbulent Piloted NH₃/H₂/N₂ Jet Flames with Transported PDF and MMC Methods

Lu Tian^{1,2,*} Andrew P. Wandel³, R. Peter Lindstedt²

*Lead presenter: l.tian@lboro.ac.uk

Ammonia is a promising alternative fuel for decarbonising hard-to-abate sectors. However, its practical utilisation is hindered by unfavourable combustion characteristics, including slow chemical kinetics, low flame speeds, and high emissions of oxides of nitrogen. These challenges are further exacerbated in turbulent flames due to enhanced turbulence-chemistry interactions. This study uses the Joint-scalar transported Probability Density Function (JPDF) [1] and Multiple Mapping Conditioning (MMC) [2] frameworks, both of which inherently provide a closed treatment of the chemical source term. The methodology is applied to investigate three turbulent piloted ammonia-hydrogen-nitrogen-air flames [3] exhibiting different degrees of local extinction corresponding to 59% (Flame D), 79% (Flame E), and 89% (Flame F) of the blowoff velocity. The performance of JPDF-based models, featuring Modified Curl's (MC) [4] (JPDF-MC) and Euclidean Minimum Spanning Tree (EMST) [5] (JPDF-EMST) closures, is evaluated alongside the MMC-based models MMC-IEM [6], based on Interaction by Exchange with Mean (IEM), and MMC-MC [7]. All four models show generally good agreement with experimental data for Flame D. In contrast, Flames E and F reveal more pronounced differences in terms of predicted scalar statistics and the local extinction behaviour. However, flame structures are generally well reproduced for Flame E, in particular by JPDF-MC and MMC-MC. The axial location of the most significant local extinction is also accurately captured by these models for Flame F though the extent appears under-predicted. The impact of the MMC formulation on the performance of the MC model is also investigated along with parametric sensitivities.

References

- [1] S. B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985) 119–192.
- [2] A. Y. Klimenko, S. B. Pope, The modeling of turbulent reactive flows based on multiple mapping conditioning, Phys. Fluids 15 (2003) 1907–1925.
- [3] H. Tang, R. Barlow, G. Magnotti, Local extinction in piloted turbulent partially premixed ammonia/hydrogen/nitrogen-air jet flames, Proc. Inst. Combust. 40 (2024) 105472.
- [4] J. Janicka, W. Kolbe, W. Kollmann, Closure of the transport equation for the probability density function of turbulent scalar fields, J. Non-Equilib. Thermodyn. 4 (1979) 47–66.
- [5] S. Subramaniam, S. B. Pope, A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees, Combust. Flame 115 (1998) 487–514.
- [6] A. P. Wandel, A numerically-stable method for enforcing numerical conservation in transported probability density function models: Application to MMC-IEM with one reference variable, Proc. Inst. Combust. 40 (2024) 105291.
- [7] A. P. Wandel, R. P. Lindstedt, A mixture-fraction-based hybrid binomial Langevin-multiple mapping conditioning model, Proc. Combust. Inst. 37 (2019) 2151–2158.

¹Department of Aeronautical and Automotive Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK

²Department of Mechanical Engineering, Imperial College, Exhibition Road, London SW7 2AZ, UK

³School of Engineering, University of Southern Queensland, Toowoomba, Qld, 4350, Australia