Effects of pressure on thermodiffusively-unstable lean premixed hydrogen piloted jet flames

A. J. Aspden*, E. F. Hunt, A. Moitro *Lead presenter: andrew.aspden@ncl.ac.uk

School of Engineering, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK

This paper presents a DNS study of thermodiffusively-unstable lean premixed hydrogen piloted jet flames, focussing on the effects of pressure. The simulations were performed with the wellestablished DNS solver PeleLMeX [1, 2], and the Burke et al. chemical mechanism [3], with the Soret effect included following [4]. The premise of the study is to investigate how turbulenceflame interactions and the thermodiffusive response vary with pressure, in particular whether atmospheric studies can be generalised to high pressures with the appropriate normalisation. A reference atmospheric condition was taken from the Cambridge Bunsen flame [5, 6], where the jet diameter was 15 mm, with an inlet speed of 3.5 m/s, and a reactant equivalence ratio of $\phi = 0.3112$. Two trajectories were selected: firstly, increasing the pressure (up to 16 atm in factors of 2) with a fixed burner size and inlet speed; and secondly, increasing the pressure but normalising the burner diameter and inlet velocity to match the freely-propagating Karlovitz and Damköhler numbers. The trajectory with fixed burner geometry resulted in significant differences with increasing pressure, but is instead attributed to the increase in Karlovitz number; conversely, the trajectory with fixed dimensionless parameters resulted in flames with much more comparable thermodiffusive response, demonstrating that the appropriate nondimensionalisation mitigates the effects of pressure.

References

- [1] M. S. Day, J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry, *Combustion Theory and Modelling*. 2000;4(4):535-556.
- [2] A. J. Nonaka, M. S. Day, J. B. Bell, A conservative, thermodynamically consistent numerical approach for low mach number combustion. Part I: Single-level integration, *Combustion Theory and Modelling*. 2018;22(1):156-184.
- [3] M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, S. J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, *International Journal of Chemical Kinetics*. 2021;44(7):444-474.
- [4] T. L. Howarth, M. S. Day, H. Pitsch, A. J. Aspden, Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames, *Proceedings of the Combustion Institute*. 2024;40(1-4):105429.
- [5] O. Chaib, J. Bae, L. Weller, A. J. Aspden, S. Hochgreb, On the interaction between turbulence and thermodiffusive instabilities in lean premixed hydrogen-enriched flames, *submitted*. 2025.
- [6] A. Moitro, E. F. Hunt, T. L. Howarth, O. Chaib, J. Bae, L. Weller, S. Hochgreb, A. J. Aspden, Direct numerical simulations of laboratory-scale thermodiffusively-unstable bunsen flames: Measuring turbulent flame speed and surface area, *Proceedings of the European Combustion Meeting*. 2025.