

Automated Approach to Pyrolysis and Oxidation Modelling for Sustainable Aeronautic Fuels (SAF)

Anthony BERGAUD^{1,2*}, Thomas LESAFFRE¹, Omar DOUNIA¹, Eleonore RIBER¹ CERFACS, 42, av. Gaspard Coriolis, 31100 Toulouse, France

² SAFRAN AIRCRAFT ENGINES, Rond-point René Ravaud, 77550 Moissy-Cramayel, France

In the context of decarbonizing the energy sector, and more specifically the aeronautical field, engine manufacturers have committed to the path of alternative fuels (Sustainable Aviation Fuels, or SAFs). In addition to experimental campaigns, numerical simulation proves to be an essential tool, capable of reproducing even slight "fuel effects" on engine performances.

One of the key challenges in Large-Eddy Simulations (LES) of complex fuel combustion lies in accurate and affordable chemical kinetics modelling. While Analytically Reduced Chemistry (ARC) [1-4] has significantly advanced our understanding of these processes, its use in LES remains computationally intensive and difficult to implement in industrial settings. To address this issue, it is proposed to model large fuel molecule combustion using a global mechanism encompassing both fuel pyrolysis and oxidation, following H. Wang et al. work [5,6]. It is intended to reproduce the key parameters governing both the internal and global features of the combustion of these large fuel molecules.

For the fuel fragmentation part, an automated methodology developed by L. Heberle et al. [8] is used to identify the most important species, the dominant reaction pathways and their associated kinetic parameters. The oxidation of pyrolysis products, resulting from the first step, is subsequently described using a global oxidation reaction scheme. The accuracy and generalization capabilities of the resulting chemical scheme are assessed through several canonical configurations.

References

- [1] Pepiot-Desjardins, P.; Pitsch, H. An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms. Comb. And Flame 2008, 154 (1–2), 67–81.
- [2] Cazères, Q.; Pepiot, P.; Riber, E.; Cuenot, B. A Fully Automatic Procedure for the Analytical Reduction of Chemical Kinetics Mechanisms for Computational Fluid Dynamics Applications. Fuel 2021, 303, 121247.
- [3] Jaravel, T.; Riber, E.; Cuenot, B.; Bulat, G. Large Eddy Simulation of a Model Gas Turbine Burner Using Reduced Chemistry with Accurate Pollutant Prediction. Proc. Comb. Inst. 2017, 36, 3817–3825
- [4] Jaravel, T.; Riber, E.; Cuenot, B.; Pepiot, P. Prediction of Flame Structure and Pollutant Formation of Sandia Flame D Using Large Eddy Simulation with Direct Integration of Chemical Kinetics. Comb. and Flame 2018, 180–198.
- [5] Wang, H.; Xu, R.; Wang, K.; Bowman, C. T.; Hanson, R. K.; Davidson, D. F.; Brezinsky, K.; Egolfopoulos, F. N. A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry I. Evidence from Experiments, and Thermodynamic, Chemical Kinetic and Statistical Considerations. Comb. And Flame 2018, 193, 502–519. [6] A. Felden, L. Esclapez, E. Riber, B. Cuenot, and H. Wang. "Including real fuel chemistry in LES of turbulent spray combustion". In: Comb. and Flame 193. July 2018 (2018), 397-416
- [7] Heberle, L.; Pepiot, P. Automatic Identification and Lumping of High-Temperature Fuel Decomposition Pathways for Chemical Kinetics Mechanism Reduction. Proc. Comb. Inst. 2021, 38 (1), 1053–1061.

^{*}lead presenter: bergaud@cerfacs.fr