

Artificial intelligence-driven design of sustainable aviation fuels

Basem A. Eraqi^{1*}, Shashank S. Nagaraja¹, Dmitrii Khizbullin², S. Mani Sarathy¹ *lead presenter: basem.eraqi@kaust.edu.sa

1 Clean Energy Research Platform, King Abdullah University of Science and Technology, Saudi Arabia

2 Center of Excellence in Generative AI, King Abdullah University of Science and Technology, Saudi Arabia

The global aviation sector is under increasing pressure to reduce its carbon footprint, with sustainable aviation fuels (SAFs) emerging as a critical enabler of decarbonization. Yet, the conventional development and certification of SAFs remain constrained by protracted experimental procedures and high costs associated with ASTM D4054 and D7566 evaluations [1]. To address this challenge, we propose an artificial intelligence (AI)-based framework for the rapid design and screening of novel SAF mixtures that meet both performance and regulatory criteria. This framework integrates a graph neural network (GNN) architecture capable of predicting a comprehensive set of SAF-relevant properties—including energy density, flash point, viscosity, density, freezing point, and more—directly from molecular composition. The GNN leverages molecular graph representations to learn chemically meaningful features [2], outperforming traditional descriptor-based models in accuracy and generalizability across diverse molecular classes relevant to SAF development.

To capture the complex behavior of real-world fuel blends, the model incorporates a mixing operator [3] approach that combines learned latent representations of individual molecules according to their relative composition. This enables accurate prediction of mixture-level properties while accounting for non-linear effects such as azeotropy, intermolecular interactions, and synergistic reactivity—phenomena often overlooked by simple additive mixing rules.

Beyond forward prediction, the platform includes a latent space search algorithm for inverse design. Given a target set of properties—such as adequate cetane number, low freezing point, and optimized density—the system performs multi-objective optimization to identify novel candidate mixtures that satisfy the specified performance envelope. These formulations are scored using merit functions aligned with ASTM specifications, enabling data-driven prioritization of the most promising blends for experimental validation.

By fusing predictive modeling with generative design, this AI-powered framework enables high-throughput exploration of the SAF formulation space, reducing the dependency on exhaustive empirical testing. It represents a scalable tool for accelerating SAF discovery and supporting the aviation industry's transition toward more sustainable, certifiable fuel solutions.

References

- [1] S. M. Sarathy and B. A. Eraqi, "Artificial intelligence for novel fuel design," Proceedings of the Combustion Institute, vol. 40, no. 1, p. 105630, 2024.
- [2] A. M. Schweidtmannet al. "Graph Neural Networks for Prediction of Fuel Ignition Quality," Energy & Fuels, vol. 34, no. 9, 2020.
- [3] N. Kuzhagaliyeva et al. "Artificial intelligence-driven design of fuel mixtures," Commun Chem, vol. 5, no. 1, p. 111, 2022.