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Fairness & Machine Learning



Big Data and AI

The Data convey the information and the model should be built to fit the data

From data to information : extraction the knowledge from empirical

observations

Finding relationships or links between variables and a target

The rule can be generalized to forecast new observations

The more the data the better the description of the reality

Principle of Machine Learning : from a set of labeled examples (learning

sample), build a decision rule that fits the data that will be used for all the

population which has the same distribution as the learning sample.

The Algorithm (or AI) learn the best rule from the data and then can forecast

for new observations with a guaranteed precision.
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How Machine Learning could go possibly wrong ?

Decisions are taken based on machine learning algorithms in many fields

(recommendation systems, insurance, banks, human ressources, education,

communication ... ) and are on the way to be used in many sensitive areas

(justice, medicine, police, political decisions ....)

Algorithms are more and more complex producing highly non linear outputs

with non interpretable rules.

A classifier goal is to cluster observation, to discriminate. If there is seed

of discrimination it will be increased, enforced by the decision rule.

AI generalizes the situation encountered in the learning sample to the

whole population.

It shapes the reality according to the learnt rule without questioning nor

evolution.

”It’s the mathematics, stupid” . Difficult to argue with an expert AI to

understand a decision. Mathematics can not be questioned so the

decisions taken can be justified using a scientific argument.
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What does it mean Being Fair ?

Fair : ”treating someone in a way that is right or reasonable, or treating a

group of people equally and not allowing personal opinions to influence

your judgment” (Cambridge Dictionnary)

Every group should be treated without prejudice and the decisions should

be based on variables that makes sense.

Examples :

Hiring policy driven by people’s study or sex ?

Granting a loan using religion or earnings ?

Product Recommendations using Internet History or street address?

Recidivism score based on judicial past of offendant or colour of skin?

Some variables (protected variables) should not be used alone to build a

model.

The efficiency of the algorithm should not depend on these variables and

should be the same for all groups.

Examples : new treatment in medicine should be efficient for all

population.
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What does it mean Being Fair ?

Consider the probability space
(
Ω ⊂ Rd ,B, p

)
, with B the Borel σ−algebra of

subsets of Rd and d > 1. In this space,

- Y : Ω→ {0, 1} target class

Y =

{
0 failure

1 success

- X : Ω→ Rd , d > 1, visible attributes

- S : Ω→ {0, 1} protected attribute

S =

{
0 unfavored

1 favored

- G family of binary classifiers g : Rd → {0, 1}

- Ŷ = g(X ), g ∈ G outcome of the classification

Fairness deals with the relationships between Y , Ŷ and S.
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Examples

1 Adult Income Data.

Data from a bank : Forecast from characteristics if someone has the

potential to have a high income (≥ 50k$) to grant a loan.

Variables : Age, Workclass, Final weight, Education, Marital status,

Occupation, Relationship, Gender, Race, Capital gain, Capital loss, Hours

per week, Native country.

Output Y ∈ {0, 1} if predicted income is higher than the threshold or not.

Protected Variables : Gender, Race, Native country.

Result :

P(Ŷ = 1|S = 1) >> P(Ŷ = 1|S = 0).
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Examples

1 Adult Income Data.

2 ProPublica vs Northpoint

Northpoint produces a score COMPAS to measure the probability of

recidivism of offendants. This score has been designed using Machine

Learning Algorithm from a learning sample to predict if someone will

commit a crime when set free Y = 0.

Variables : characteristics of people and their crime

Protected Variable : Ethnic Origin S = 0 coding Afro-American.

It is balanced

P(Ŷ = 1|S = 1) ∼ P(Ŷ = 1|S = 0).

But the errors are different

P(Ŷ = 1|S = 1,Y = 0) >> P(Ŷ = 1|S = 0,Y = 0).
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Removing Unfair treatment : a Challenge

Two different points of view in the Machine Learning literature.

The forecast should not depend on the protected variables S

Ŷ should be independent of S or their correlation strength should not be

too strong.

Several Criteria to measure the strength of the relationship between the

two variables : Disparate Impact Assessment or Distance between the

distributions

d(L(Ŷ |S = 0),L(Ŷ |S = 1)) ≤ ε.

Or the prediction errors should not be different for the two groups S = 0

and S = 1.

Given the forecast Ŷ and the variables X , S should not be predictable.

Different notions to be considered called Statistical Parity, Conditional Equity,

Conditional Use Equity, Balance Error Rate ...
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Removing Unfair treatment : a Challenge

Machine Learning Algorithm produces discrimination.

Automatic classifiers aims at discriminating the population so all

discriminative trends are investigated.

Removing the variable S does not help since X and S can be strongly

correlated.

=> Penalizing the algorithm to prevent dependency w.r.t S

Bias in the learning sample.

Data is not representative of all population and there is different

treatment between S = 0 and S = 1 groups

Ŷ = g(X , S), R(g ,X ,S) := P(g(X , S) 6= Y ).

=> Repairing the data set by removing the group influence.

”Life is unfair and we must accept it ” : The learning sample may be biased but

this peculiar situation should not be taken as granted and generalized to all

cases as Machine Learning does.
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Mathematical Formalism for Fairness



Criteria of Fairness

Definition

A classifier g : Rd → {0, 1} achieves Overall Accuracy Equality, with respect

to the joint distribution of (X , S ,Y ), if

P(g(X ) = Y | S = 0) = P(g(X ) = Y | S = 1).

But practical study of fairness must be based on (Ŷ = g(X ), S)

Definition

A classifier g : Rd → {0, 1} achieves Statistical Parity, with respect to the

joint distribution of (X , S), if

P(g(X ) = 1 | S = 0) = P(g(X ) = 1 | S = 1).

The probability of a successful outcome is the same across groups

Full parity is too strong assumption so need for a quantitative criterion
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Criteria of Fairness when we know (X ,S , Ŷ = g(X ))

Definition

The Disparate Impact of the classifier g ∈ G, with respect to (X ,S) is defined

as

DI (g ,X , S) =
P(g(X ) = 1 | S = 0)

P(g(X ) = 1 | S = 1)
:=

a(g)

b(g)
.

We consider classifiers g such that a(g) > 0 and b(g) > 0

Ideal scenario: g achieves Statistical Parity ⇔ DI (g ,X , S) = 1

Statistical Parity is often unrealistic 99K relaxation

Definition

The classifier g : Rd → {0, 1} has Disparate Impact at level τ ∈ [0, 1], with

respect to (X , S), if DI (g ,X , S) 6 τ .

DI (g ,X , S) measures the level of fairness of g : the smaller the value of τ ,

the less fair it is
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Confidence Interval for Fairness

Besse, P., Del Barrio, E., Gordaliza, P., and Loubes, J-M.

Statistical tests of unfairness in algorithmic decisions. ( 2018).

DI (g ,X ,S) =
P(g(X ) = 1 | S = 0)

P(g(X ) = 1 | S = 1)

↓

Statistic:

Tn :=

∑n
i=1 1g(Xi )=11Si=0

∑n
i=1 1Si=1∑n

i=1 1g(Xi )=11Si=1

∑n
i=1 1Si=0

,

CLT + Delta Method ⇒
√

n

σ
(Tn − DI (g ,X ,S))

d−→ N(0, 1), as n→∞,

(
Tn ± σ√

n
Z1−α

2

)
is a CI for DI (g ,X , S) asymptotically of level 1− α
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Achieving Fair Learning



Achieving Fairness

To ensure Fairness we may consider

Finding Classifiers such that L(g(X )|S = 0) is close to L(g(X )|S = 1) by

adding a penalty

Bechavod and Ligett (2017), Zafar et al. (2017), Donini et al. (2018)

Modify the input data ⇒ break the relationship with the protected

attribute

(Feldman et al. (2015) and large literature) Changing the data X into X̃ a

way such that L(X̃ |S = 0) is close to L(X̃ |S = 1) to gain that for all

possible classifiers constructed using X̃

for all DI (g , X̃ ,S) > τ.

The more fair maybe the less predictable (or predictable in a different way)

Total Repair = Achieving Statistical Parity at all cost (v.s) Partial Repair

with a trade-off between fairness and performance
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Total Repair: achieving Statistical Parity

Goal:

X −→ X̃ such that L
(

X̃ | S = 0
)

= L
(

X̃ | S = 1
)

L
(

g(X̃ ) | S = 0
)

= L
(

g(X̃ ) | S = 1
)
, ∀g ∈ G

⇒ DI (g , X̃ , S) = 1

Methodology:
TS : Rd −→ Rd

X 7−→ X̃ = TS(X )
s.t.

L (T0(X ) | S = 0) = L (T1(X ) | S = 1)

TS depends on the binary random variable S

µ0 ∼ X | S = 0
µ1 ∼ X | S = 1

ν = µS ◦ T−1
S

1 Best choice for the distribution ν of the repaired variable?

⇒ Wasserstein barycenter proposed in Fair Learning litterature

2 Optimal way of transporting µ1 and µ0 to this new distribution ν?

⇒ Optimal Transport Maps
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Partial Repair : Random Repair (del Barrio et al. 2018)

Instead of moving all distributions , shift randomly a sufficient part of it

Z target variable with general distribution µ

B ∼ B(λ), independent of (X , S ,Y )

Rs = T−1
s , where µ = µs ]Ts , s = 0, 1,

R0(Z) ∼ µ0 and R1(Z) ∼ µ1

X̃λ = BTs(X ) + (1− B)X

New Variable with λ as a trade-off

µ̃s,λ = L(BZ + (1− B)Rs(Z)) = L(BTs(X ) + (1− B)X | S = s), s ∈ {0, 1}

λ = 0 ⇒ µ̃s,0 = L(X | S = s) Unmodified variable

λ = 1 ⇒ µ̃s,1 = L(Z) = µ Totally repaired version
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Application to a real data example: Adult Income data

Disparate Impact and Accuracy of the classification with the repaired data

set

Statistical Model Repair Error Difference D̂I CI 95%

Logit (A) 0.218 0.0116 0.937 (0.841, 1.033)

Logit (B) 0.2077 0.00128 1 (0.905, 1.095)

Random Forests (A) 0.2272 0.0592 1.1 (0.976, 1.223)

Random Forests (B) 0.2045 0.0365 1 (0.886, 1.114)
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95% Confident Interval for DI of logit
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95% Confident Interval for DI of random forests
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