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1 Introduction

In recent years, National Statistical Offices (NSOs) have increasingly searched for
information sources alternative and in addition to survey data. Progressively more
administrative data sources are used in official statistics. The first statistical products
based on big data sources have already been published [1]. A promising big data source
are remote sensing data, i.e., satellite or aerial imagery, that can provide a detailed
and an integral view of a country’s urban areas [2, 3], infrastructure [4], and natural
resources [5, 6, 7, 8]. Remote sensing data can be used as a main data source for
official statistics, for example regarding the UN sustainable development goals, such
as urbanization, poverty, or the production of clean energy [9, 10]. It can also be used
as an additional data source, for instance to quality check existing registers, or as a
way to extrapolate survey data to geographical areas that are less densely covered.
While already a large body of research has been done in the remote sensing community
[11, 12], remote sensing data has not found widespread adoption in official statistics.
In a large part, this can be explained by the remote sensing data itself. Unlike more
traditional data sources, remote sensing data needs new ways of data processing. First,
the amount of data processed is much larger, usually gigabytes or terabytes of data,
typically requiring specialized IT hardware. Second, remote sensing data consists of
image data that need specific ways of processing to be integrated in official statistics.
In this paper, we present the DeepStat framework that aims to simplify this integration
and automate as much of the process as possible. This enables statistical researchers to
focus on data exploration, information extraction, and the creation of new statistical
products based on remote sensing data. The first part in the name DeepStat refers to
deep learning, a method within the domain of machine learning that excels in a variety
of domains; the classification and analysis of images being one (i.e., it learns a model
that makes predictions on what an image is about, e.g., it is an urban area, grassland,
etc.). Deep learning is a fundamental part in the process towards official statistics,
hence the name DeepStat.The DeepStat framework supports the researchers through
the whole process starting with data acquisition, data pre-processing, (deep) model
training & evaluation, to bridging the gap between model predictions and statistical
units.

2 Overview and Overall Goal of the DeepStat frame-
work

The overall goal of the DeepStat framework is to overcome the IT barriers encountered
in the use of remote sensing data by creating user-friendly tools that facilitate deep
learning experiments on aerial and satellite images in order to produce better and new
official statistics using a sound methodology. End users can be supported in creating
high quality official statistics while being shielded from the complex technologies and
methodologies that lie behind it. Moreover, by standardizing data collection, data
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pre-processing, training and evaluation and storing results in a central portal, a lot
of complexity, reinventing the wheel, and common mistakes can be avoided. In this
sense, the DeepStat framework aims to support at least four phases in the Generic
Statistical Business Process Model: (1) Collect, (2) Process, (3) Analyze and (4)
Disseminate. As some parts of these phases look different for remote sensing data, we
will lay out how the DeepStat framework aims to support these phases in the next
subsections.

2.1 Collect

A lot of Remote Sensing data is available as open data, for instance via portals like the
Copernicus Open Access Hub1 or that of the US Geological Survey2. To be used in
the statistical process, the data need to be collected and possibly extracted from those
portals. While a variety of open standards for collecting remote sensing data exists 3,
some portals prefer to provide their own APIs. As these APIs are different from other
data sources in official statistics, bespoke connections need to be build. Creating a
representative sample of remote sensing data is also not straightforward. Although,
such a sample can be in principle be based on register labels for a certain statistic,
these register labels may not be directly connected to the variety in the underlying
data. As such, DeepStat aims to provide multiple ways of creating samples from the
data, as for example the creation of a sample on the basis of patterns or similarities
in the remote sensing data itself. In this way, the best way of creating representative
samples for remote sensing data can be investigated.

2.2 Process

Remote sensing data entails different types of data from different sensors, different
parts of the visual spectrum, as well as satellite data and aerial images. Moreover,
to use remote sensing data we need to be able to process large quantities of data
and make them suitable to be used with machine learning techniques that can detect
patterns in the data. Often, remote sensing data also needs to be processed before
it can be used, for instance by removing atmospheric disturbances. DeepStat aims
to provide support for a variety of remote sensing data, provide commonly used pre-
processing techniques out of the box, and automate support as much as possible. More
specifically, to process the remote sensing data DeepStat offers various state-of-the-art
Deep Learning algorithms [13, 14, 15] that can be trained and evaluated on the data.
To train well-performing Deep Learning algorithms so-called hyper-parameters need to
be tuned and certain performance metrics need to be optimized [16]. DeepStat offers
several hyper-parameter optimization techniques [17, 18] that automatize this process
and furthermore offers standard performance metrics out-of-the-box. In addition, all
results and models are stored along with their performance metrics, which enables
statistical researchers to carry out and compare a range of experiments on various
remote data sets.

2.3 Analyze & Disseminate

To use the results of Deep Learning algorithms in official statistics, the resulting
model predictions need to be translated into statistical units. This translation is still
the subject of current research. Especially, it is not entirely clear how to retrieve

1https://scihub.copernicus.eu
2https://www.usgs.gov/
3https://www.osgeo.org/about/open-standards/
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model uncertainty out of deep learning models [19] and prediction probabilities often
do not relate to the underlying distribution of classes; i.e. deep learning models
are largely uncalibrated [20]. To support research into this areas, DeepStat offers a
range of metrics for model uncertainty and model calibration. Furthermore, the Deep
Learning algorithms trained need to be evaluated for other geographical regions that
have not been encountered during the training process. Several methods of model
evaluation have been suggested, of which the cross-region evaluation gives the best
indication of how well models generalize [9, 21]. To this cause, DeepStat simplifies
model evaluation on other geographical regions and datasets. Finally, to disseminate
results, DeepStat offers a way to visualize results geographically, create interactive
plots of model results, and relate them to other register data available.

3 Requirements and Implementation

DeepStat is implemented as open source software and builds upon existing open source
frameworks for remote sensing. It integrates several local and international open data
sources, the Dutch PDOK geographical portal, Copernicus Open Access Hub4, and
the US Geological Survey5. By adhering to open geographical standards like those
provided by the Open Source Geospatial Foundation 6 DeepStat can integrate other
third-party geographical data sources more easily. In addition, by using generic open
software standards interoperability with other geographical systems can be provided
and maintained. DeepStat will be implemented in a client-server infrastructure, where
researchers can connect to a central portal that stores all their data and experiments.
By using a standard like for example OpenAPI7 to specify the client server interac-
tion, the connection to a variety of programming languages can be facilitated and
automated. Moreover, integration with other data processing tools will be simplified.
To evaluate whether the DeepStat framework is fit for the tasks at hand and provide
proper support, it will be tested with end-users in the statistical departments on a
variety of geo-spatial use-cases related to the Sustainable Development Goals. This is
ensured by an iterative implementation process that puts an evaluation with end-users
at the end of each implementation cycle.

4 Conclusions

This paper presented the DeepStat framework, a framework that makes remote sensing
data more accessible to statistical researchers. DeepStat aims to shield the statistical
researchers as much as possible from the technical details and complexity of analysing
remote sensing data using deep learning methods. It helps researchers create more
reproducible research by providing a central storage for all data, results, and evalu-
ations. By offering standard tools it also helps researchers with the methodological
issues that might be encountered in the use of remote sensing data. In this way, Deep-
Stat’s main objective is a more widespread use of remote sensing data as an additional
or primary source of information for official statistics.

4https://scihub.copernicus.eu
5https://www.usgs.gov/
6https://www.osgeo.org/about/open-standards/
7https://github.com/OAI/OpenAPI-Specification
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