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1. INTRODUCTION 

Poverty is one of the chronic problems of the XXI century and, despite the recent decrease 
of global economic inequalities, in 2016 about 800 million people still lived in extreme 
poverty condition. In this context, poverty alleviation programmes generally rely on data 
about local economic livelihood for identifying places with highest need for aid [1]; 
nevertheless, this information traditionally comes from patchy, expensive and logistically 
challenging household surveys. 

Given the issues of scaling up traditional data collection efforts, in the past few years 
alternative strategies have been proposed for estimating wealth – and in turn poverty – by 
means of satellite data. In this framework, some novel studies proposed the employment 
of very high resolution (VHR) satellite imagery coupled with (sparse) information 
extracted from in-situ wealth surveys [2], [3]. Nonetheless, despite promising, these still 
exhibit some critical drawbacks, the major being: i) the high cost of VHR data; ii) the very 
poor spatial resolution of the final spatial poverty maps (i.e., 10km); iii) the employment 
of NASA’s night-time-lights (NTL) as proxy for the economic activity, which generally 
leads to overestimation in bigger urban regions and underestimation in rural areas. 

To overcome these limitations, the European Space Agency (ESA) has funded the “Earth 
Observation for Poverty” (EO4Poverty) project, led by the Swiss non-profit association 
MindEarth with the support of the German Aerospace Center (DLR) and the participation 
of the World Bank as end user. Specifically, EO4Poverty aimed at implementing a novel 
and robust system based on advanced deep-learning to generate accurate spatial wealth 
maps by exploiting freely available EO data in combination with sparse in situ survey data. 
In particular, the goal was to improve existing approaches and to provide an easily 
transferable service for creating maps which can be employed as ready-to-use tool for 
policy makers. Indeed, a better understanding of the spatial distribution of wealth is 
fundamental for e.g. targeting the development of basic infrastructures or possibly 
understanding the main causes of the phenomenon. 

Among others, the main innovations of EO4Poverty with respect to the existing state-of-
the-art approaches include: i) the use of open and free high-resolution ESA Sentinel-2 
imagery; ii) the design of an end-to-end deep learning-based system which directly 
estimates the local wealth (in contrast to complex existing transfer learning approaches 
where deep learning is used as feature extractor); iii) the production of wealth spatial 
distribution maps at unprecedented 100m spatial resolution. Extensive experimental 
analyses have been carried out for 8 countries, namely Haiti, Malawi, Nepal, Nigeria, 
Rwanda, South Africa, Tanzania and Uganda.  

2. METHODS 

Figure 1 reports a block scheme of the final system, which consists of 3 main components, 
namely the reference wealth information, the EO-based input data and the deep-learning 
architecture. 
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In EO4Poverty, reference wealth data collected from the Demographic and Health Surveys 
(DHS) have been considered. In particular, these include a wealth index ranging from 1 
(low) to 5 (high) computed accounting for responses to questions about ownership of given 
durable goods and specific housing characteristics. Latest DHS surveys for the project 
target countries have been collected between 2014 and 2018. For privacy reasons, DHS 
data refer to clusters of surveys collected in the same site and are provided with a bias of 
2/5 km for urban/rural survey locations. Accordingly, to properly account for this issue, in 
EO4Poverty circles of 2/5km radius have been first generated and centred over urban/rural 
survey locations. Then, after associating them with the DHS wealth index of the 
corresponding cluster, for each overlapping patch, the mean has been computed (along 
with the standard deviation and total number of observations). 

Two key datasets are provided as input to the implemented system, namely Sentinel-2 (S2) 
based temporal statistics and the human settlement composite index (HSCI) [4]. 

Concerning S2, the basic idea is to gather all scenes collected over the country of interest 
in a 1-year timeframe and extract different temporal statistics for specific indices. This 
allows to effectively compress the information present in the whole multitemporal series. 
In particular, 2019 Level 2-A imagery has been considered (since wealth generally evolves 
slowly over time, the gap of 1 to 4 years with respect to the DHS reference surveys is 
reasonably not critical). Cloud, cloud-shadow, snow and ice have been masked by means 
of the Scene Classification Map provided along with each individual scene. Afterwards, in 
addition to the original 10 bands acquired at 10 and 20m resolution, all possible normalized 
difference indices have been generated and for each of them the corresponding temporal 
minimum, maximum, mean, median and standard deviation have been computed. 
Furthermore, as simple but effective texture measures, for each temporal mean feature the 
corresponding spatial local mean and the coefficient of variation (given by the ratio 
between the spatial local standard deviation and local mean) have been calculated using a 
5x5 pixel neighbourhood. This led to a dataset consisting of 455 features. Out of these, 
Random Forest feature selection has been employed using the HSCI as reference to finally 
identify a subset of 17 features most suitable for characterizing the economic activity (and, 
in turn, wealth). The effectiveness of employing Sentinel-1 temporal statistics (alone or in 

 

Figure 1. Block scheme of the implemented convolutional encoder-decoder network 
for generating high-resolution spatial wealth maps from S2-based features, HSCI 
index and reference DHS information. 
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combination with S2) has also been investigated; nevertheless, this did not provide any 
appreciable improvement. 

Emerging studies proved that the combination with imperviousness information can reduce 
the saturation of the NTL in greater settlements as well as its typical diffusion effect in 
suburban areas. Moreover, in rural areas where scattered human settlements are hardly 
captured in the NTL layer, the presence of paved surfaces can be an effective indicator of 
the economic status. Accordingly, as more effective proxy of the economic activity the 
novel HSCI has been employed, which is jointly derived from NTL luminosity and both 
S2 based imperviousness and vegetation indexes. 

As deep-learning architecture, a 3-layer convolutional encoder-decoder network has been 
chosen in the light of the excellent performances exhibited in several challenging 
applications. In particular, it consists of: i) an encoder network, which extracts from the 
given input a vector holding the only information (i.e., the features) meaningful to the 
specific addressed task; and ii) a decoder network, which takes the feature vector from the 
encoder and generates the closest match to the given reference. As trade-off between the 
computational load and the goal to generate high-resolution poverty maps, the target spatial 
resolution has been set to 100m (which allows to potentially characterize even intra-urban 
patterns of wealth) and the patch size to 84x84 pixels. Additionally, given the spatial bias 
added to the in-situ survey locations, it is reasonable to expect a higher reliability for 
training samples where more observations are available and their standard deviation is low. 
Hence, to properly take this into account, a dedicated weighted loss function has been 
defined which jointly considers both terms. 

3. RESULTS 

All experimental trials have been performed within the IT4Innovation “Anselm cluster” in 
Czech Republic, to which access has been granted in the framework of the ESA Urban 
Thematic Exploitation Platform (U-TEP). For each target country, 5 different models have 
been finally trained with different settings; moreover, the resulting 5 maps of estimated 
wealth index have also been combined using a linear average strategy. To quantitatively 
assess the performance of each model, 5-fold cross-validation has been applied and the 
average coefficient of determination (R²) has been calculated between the (spatially biased) 
reference DHS wealth index and the one estimated using the implemented approach. In 
this framework, recent key findings in the literature using the same DHS data suggest that 
the true (unobserved) performance of the models is actually higher than what the noisy test 
data suggest. 

Given their similar behaviours, experiments can be grouped in 3 different subsets of 
countries: Group 1, which includes Rwanda, Haiti and Uganda and resulted in R² values 
higher than 0.8; Group 2, which includes Malawi and Nigeria and resulted in R² values in 
the range between 0.7 and 0.8; and Group 3, which includes South Africa, Tanzania and 
Nepal and resulted in R² values in the range between 0.6 and 0.7. Countries belonging to 
Group 1 are characterized by the high number of surveys, whose spatial distribution also 
well covers the vast majority of settlement areas. Such a comprehensive training set is ideal 
for a proper learning of the system, which in turn results in very good performances (see 
Figure 2). Countries belonging to Group 2 are characterized by a consistent number of 
surveys, whose spatial distribution also well covers the vast majority of settlement areas, 
but are more representative of specific wealth index ranges. In this scenario, especially the 
inclusion of the HSCI index as input, as well as the employment of the weighted loss 
function proved particularly effective. Results obtained for countries belonging to Group 
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3 let reasonably assume that the collection of the corresponding in situ data is not fully 
spatially representative and considerably biased towards poorer regions. This leads to 
underestimation of the wealth index in correspondence of the richer areas, specifically 
those characterized by the presence of 1-2 story individual modern houses surrounded by 
private gardens. Indeed, almost no survey has been collected in such neighbourhoods, 
hence the system tends to associate these to low DHS wealth index given the similarity of 
their pattern in the satellite imagery to that of rural villages (for which a greater amount of 
surveys has been gathered). 

4. CONCLUSIONS 

Overall, results obtained on the selected 8 target countries are extremely promising and 
assess the potential of the proposed approach to become a valuable alternative for 
complementing (spatially and/or temporally) the analyses carried out by national statistical 
offices (NSOs) purely based on household surveys. Indeed, these: i) require years to 
execute (typically 4); ii) are often collected for a limited amount of locations; and iii) 
generally have costs in the order of 1-2 million USD. Furthermore, in the next future a 
number of potential follow-up activities are foreseen, among which: i) to test the models 
generated in the project for deriving wealth estimates in countries where no reference 
information is available; and ii) to test the effectiveness of the proposed approach in 
spatially disaggregating variables alternative to the wealth (e.g., standard of living, housing 
quality). 
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Figure 2. Rwanda – (left) Estimated DHS wealth index obtained at 100m resolution 
with the implemented system by the model exhibiting the highest R²; (right) 
corresponding average per NUTS2 units. 


