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1 Introduction

After Dinur and Nissim published their seminal database reconstruction theorem al-
most two decades ago [1], it has shaped and accelerated research activities across many
domains involved with data protection, data privacy and confidentiality, including dis-
closure control in official statistics. In its wake, ‘differential privacy’ was proposed in
2006 [2, 3] initially as a rigorous privacy or risk measure addressing consequences
from the database reconstruction theorem. Differentially private noise mechanisms
were then picked up and developed further to test and improve its use for (official)
statistics; see e.g. [4, 5, 6, 7, 8, 9].
Now a first strict line must be drawn between differential privacy as a risk measure,
and differentially private (noisy) output mechanisms that are engineered to manifestly
guarantee a given differential privacy level. However, many other noisy output mech-
anisms, using bounded or unbounded noise distributions, can be set up to give at
least a relaxed differential privacy guarantee too [3, 9]. For instance, the cell key
method originally proposed by the Australian Bureau of Statistics [10, 11, 12] can
be turned into a (relaxed) differentially private mechanism [13]. On the other hand,
strictly differentially private output mechanisms require unbounded noise distribu-
tions with infinite tails, which may have particularly negative effects on utility. This
paper aims to first address all these different notions separately, and then to present
a consolidated discussion from both utility and risk perspectives.
Population and census-like statistics are chosen as a particular topical setting for two
distinct motivations: On the one hand, treating only unweighted person counts in
contingency tables simplifies many technical discussions without touching key issues
of the noise discussion. On the other hand, global efforts on the 2020/2021 census
round are peaking right now, with many important (and urgent) contact points to
this paper. For instance, the U.S. Census Bureau has adopted a strictly differentially
private noise mechanism for the 2020 U.S. census [14, 15, 16], which received mixed
reactions down to grave utility concerns [17, 18]. On the other hand, the European
Statistical System1 has developed recommendations for a harmonised protection of
2021 EU census outputs based on the cell key method [19, 20, 21], where sizeable
disclosure risks from massive averaging attacks were claimed recently [22]. Also these
issues will be put into scope in the further course.
Our goals are to give a comparative overview of the various terms and concepts, and
to present some analytic evidence that may contribute to the process of setting up an
appropriate noise mechanism for particular output scenarios of official population or
census statistics.

1The joint body of Eurostat and the national statistical institutes of all EU countries and Iceland,
Liechtenstein, Norway and Switzerland. It is responsible for the development and quality assurance
of official European statistics.
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2 Methods

After recalling the database reconstruction theorem [1], we introduce differential pri-
vacy [2, 3] (DP) as a risk measure, coming either as strict ε-DP or relaxed (ε, δ)-DP.
Then noise distributions are probability densities defining the distribution of random
noise terms over a given range. While a strict ε-DP guarantee requires unbounded
noise (infinite range), relaxed (ε, δ)-DP or non-manifestly DP distributions can be
bounded (noise within finite range ±E).
Finally, (noisy) output mechanisms are defined as holistic processes adding random
noise drawn from a given noise distribution to each output statistics and managing
the global amount of noise injected on the whole output. Such output mechanisms
can be either flexible (amount of output unknown a priori) or static (all output is
fixed before publication). Census-like unweighted contingency tables are discussed as
a typical example of (often) static output, where specific risk/utility aspects are to be
considered (see section 3) when setting up a suitable noisy output mechanism.

3 Results

3.1 Risk aspects

While traditional statistical disclosure control (SDC) approaches are often aimed at
protecting only the small counts at particular risk of disclosure, it is meanwhile known
that entire microdata databases (incl. rare or unique records) can be reconstructed
accurately from too detailed output statistics [23]. Noise injection can preempt this
effectively, but some considerations on the detailed noise setup apply, as argued below.
First, the database reconstruction theorem requires the noise amount to scale with
the amount of published output statistics t as ∼

√
t, where it is argued that strictly

ε-DP mechanisms generally have an overprotective scaling as ∼ t. On the other hand,
if the output amount is fixed (static output), also the noise amount can be fixed
appropriately (i.e. no need for scaling).
Moreover, outputs based on bounded noise may be susceptible to attacks exploiting
output constraints (e.g. table margins) and the finite noise bound E [22]. However,
it is shown that a bounded noise distribution can be set up in a way that factually
removes this risk. The given structure of a static output can be analysed to infer a
risk-motivated lower limit on E (noise bound) as a function of V (noise variance).
Finally, all noisy outputs are in principle susceptible to massive averaging attacks [22],
where V and the amount of redundancy in the output are the key risk parameters.
Again the structure of a static output motivates a generic lower limit on V . The 2021
EU census programme is analysed as an example to find a V limit, which translates
to an upper limit on the DP privacy budget parameter ε. The same participants-same
noise (SPSN) principle [12, 9] is shown to be effective in reducing output redundancies.

3.2 Utility aspects

From a utility perspective focusing on census-like outputs, the key information is
how much noise was added to each single output count, i.e. the variance V and
bound E of the noise distribution used (cf. parameters of the cell key method [12, 24]).
Utility implications of V in a bounded noise scenario were discussed in detail in [9],
so the focus here is on tail effects of unbounded noise (as required for ε-DP output
mechanisms). In particular, the U.S. Census Bureau announced that it will apply
strictly ε-DP unbounded noise to its 2020 census outputs, with a global privacy budget
being tested in the range [0.25, 8.0] [14, 15]. The way this budget is split between
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Figure 1: Generic noise parameter space highlighting regions that survive all
risk/utility constraints (blue/yellow): the utility-driven generic V –E plane (left) and
the risk-driven (table-level) ε range (right). Yellow regions are not excluded; they
rather indicate that such setups may work in certain circumstances, or with slightly
relaxed constraints. Note that the ε range (right) is a one-parameter space, where the
utility constraint is from section 3.2. The SPSN principle is assumed to be invoked
on the left, but not on the right (DP default).
On the right, no blue region survives all constraints conservatively: averaging (left of
grey dashed line) and Eα < 20 at α = 68% (right of black dashed line interception
with E = 20). When relaxing certain constraints (between black solid line interception
with E = 20 and grey solid line), a small yellow band ε ∈ [0.27, 0.37] remains.

individual tables [16] suggests an individual ε ∈ [0.025, 0.8] for each table, which
corresponds to noise of

√
V ∈ [1.8, 57].

Applying such a noise setup to Local Administrative Unit (LAU) tables in the 2021 EU
census output (exemplifying small-area census outputs), it is shown that tail effects of
unbounded noise can lead to > 100% distortions for sizeable numbers of LAU units
with observed counts > 20 and up to > 200. Accurate information at high geographic
detail being a key unique feature of censuses, such distortions on individual LAUs
may be unacceptable. This can be turned into a utility-motivated lower bound on
the privacy budget ε spent on small-area tables, by requiring that unbounded noise
remain within a set limit ±Eα (e.g. Eα = 20) at confidence level α for a given number
of output statistics (e.g. all LAU total counts).

3.3 Risk vs. utility for upcoming censuses

In an attempt to integrate the findings of sections 3.1 and 3.2 for the scope of the 2021
EU census, the risk-motivated resp. utility-motivated parameter limits obtained there
can be combined into a global picture of the generic noise parameter space: Fig. 1
illustrates that utility-driven parametrisations using individual count-level variance V
and noise bound E can be set up within a range that avoids all risk/utility constraints
assessed in this paper (e.g. V & 2 to 3 and E & 5 to 10). On the other hand, risk-
driven approaches such as strictly ε-DP mechanisms with unbounded noise are severely
constrained by the simultaneous requirements of risk (massive averaging) and utility
(small-area accuracy) considerations. In particular, only a narrow window around
individual table-level ε ' 0.3 seems to remain with acceptable compromises.
Global constraints as in Fig. 1 do depend on the exact (static) output, but in gen-
eral such constraints can always be obtained systematically from the static output
structure. This is what makes the risks controllable: if no satisfying parameter setup
is found, the output can be curated to relax the constraints. While ε-DP as a risk
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measure may contribute to an assessment of appropriate noise amounts, the flexibility
of ε-DP mechanisms is heavily limited with just a single parameter (the privacy bud-
get). It is the presence of a second parameter—the noise bound E, or δ in (ε, δ)-DP
mechanisms—that adds flexibility to arbitrate between risk and utility constraints.

4 Conclusions

Recent results suggest that random noise methods are the most effective counter-
measure to systematic database reconstruction [1] attacks (which can reveal all rare
and unique microdata records), where the amount of noise should scale with output
detail. This scaling rule implies a first important notion: flexible output mechanisms
(where the output detail or‘complexity’ is not fixed a priori) require some kind of
noise scaling and are thus much harder to realise within reasonable risk and utility
constraints. On the other hand, static output mechanisms (pre-fixed output complex-
ity) allow for a diligent curation, including controlling risks and assessing risk/utility
trade-off to fix a static noise amount. Unless imposed by external constraints, a move
from static to flexible output mechanisms should be considered very carefully.
Differential privacy (DP) is a useful concept to quantify risk irrespective of a partic-
ular output scenario, and hence to compare risk levels consistently between various
SDC approaches [2, 7]. DP risk measures may thus contribute to a broadly based
SDC assessment. Moreover, DP provides for automatic noise scaling with output
complexity, as required by flexible output mechanisms. However, this paper suggests
that the complexity scaling of DP noise levels is over-protective for increasingly com-
plex outputs, so DP inferences on absolute noise levels should be handled with care,
especially with complex static outputs.
The paper makes a clear separation between DP risk measures and DP output mech-
anisms, where the latter may give strict ε-DP or relaxed (ε, δ)-DP guarantees with ε
the total privacy budget spent on the entire output. However, strictly ε-DP mech-
anisms must employ unbounded random noise distributions, while relaxed (ε, δ)-DP
or not manifestly DP mechanisms can have bounded distributions. It is shown that
in static output scenarios, typical generic risks such as margin exploits and massive
averaging are controllable with bounded noise, (ε, δ)-DP or not. Conversely, the un-
bounded noise of strictly ε-DP mechanisms may lead to severe utility damage when
the noise amount is tuned up to evade averaging risks. More generally, the fact that
ε-DP mechanisms only have a single parameter costs a lot of flexibility.
Censuses are big national investments for comparably narrow purposes, not neces-
sarily to answer any question any user may have on any characteristics of any sub-
population. This suggests a static output mechanism with a utility-driven parametri-
sation, which allows to maximise utility within purpose scope while controlling risks
carefully. Finally, if particular SDC mechanisms jeopardise unique census features,
they are bluntly unfit for the purpose. For the scope of the 2021 EU census round,
this paper finds noise methods recommended by the European Statistical System [19],
including bounded noise from the cell key method, suitable to protect outputs in a
controlled way. The generic parameter space (noise variance and noise bound) is con-
strained by different risk or utility requirements, but various setups remain feasible.
Such setups can obtain a relaxed (ε, δ)-DP guarantee, if needed. On the other hand,
strictly ε-DP mechanisms are severely constrained, with only a small parameter win-
dow remaining for a possibly acceptable compromise. It seems strict ε-DP guarantees
are overpriced (in utility) at least for census-like scenarios.
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