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1 Introduction

Microsimulations of agent based models form an increasingly important tool for long
and short time predictions of the evolution of key socio-economic quantities. For
decision making on all levels of governance the outcomes of such microsimulations
might provide valuable additional information. Contrary to classical mean field models
for macroscopic observables, agent based models can take into account the intrinsic
stochasticity of individual behavior and provide as outcomes probability distributions
over possible trajectories. The complexity, sophistication and specificities of an agent
based model depends very much on the aims of the model and the available data.
For predictions of slowly varying sociological factors like the demographic age profile
of a population it is usually enough to consider a discrete time evolution on a yearly
base. Predictions for labour market related observables are subject to monthly or
even weekly changes. Forecasting epidemic outbreaks of rapidly spreading diseases
like influenca or COVID 19 has to be done at least on a daily base which is also the
time unit on which data are collected and available. Complex models formulated in
continuous time form up to now a minority among agent based models. The reason for
that is mainly traditional and the unjustified but widespread belief that continuous
time models would add an additional degree of computational complexity and hence
are not suitable for large scale simulations on country or regional levels which involve
usually millions of individuals. On the other side continuous time microsimulations
have the advantage that events are disjoint and the simulation can proceed in an event
driven manner that is process on event after another and updating the systems state
accordingly. Properly implemented one can argue, that the run time of a continuous
time microsimulation for a time period T scales linear in the number of events taking
place within time T . As long as events affect only a small number of individuals in
the population and assuming that the number of events per unit time is at most linear
in population size n one can achieve runtimes proportional to const · T · n.

2 Methods

2.1 Model description

We present here a complex continuous time agent based model for COVID 19 devel-
oped by the MOCOS group in spring 2020. We describe the epidemic dynamics as a
directed first passage percolation process on a directed random graph G. The random
graph encodes the infectious link structure and as such is a subgraph of the random
graph of physical contacts between individuals. The time dependent state χt (i) of an
individual i corresponds to the setting of an SIR epidemics , that is 0 corresponds to
the susceptible class S , state 1 correspond to the class of active infected I and state
2 corresponds to the removal or recovered class R e.g. individuals which have been
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infected in the past, are cured and immune to further infections. The population is
the node set V of the random graph space and an initial state is specified by the three
subsets S0, I0 and R0 . Besides the epidemic state variable χt (i) we assign to each
node i a feature vector xi ∈ F ⊂ Rk characterizing properties of a node which are
relevant for the link structure and the timing of the infection process. To account for
differences between in-household and outside household contact structures we further-
more partition the node set V into disjoint households {Hk}Mk withM being the total
number of households. Links between nodes represent potential infectious contacts
and are defined for out-houshold contacts via a kernel function κ : F ×F → R+ such
that the probability of an infected node i to have an infectious contact to node j (
denoted by i→ j ) is given by

Pr {i→ j} = min

{
1,

κ (xi, xj)

n

}
, i, j not in the same household (1)

. Links between nodes i, j living in the same household are defined via a household
kernel κH such that Pr {i→ j} = κH (xi, xj).For both types of contacts a directed
link from node i to node j is interpreted such that node i if infected would infect
during the time when node i is infectious the noninfected node j. If node j is already
infected respectively recovered we can keep the edge or remove it since it has no effect
of the further progression of the epidemic. To define the evolution in continuous time
we assign to each edge a random "travel " time - in epidemics called the generation
time or serial interval - τij drawn from a distribution ϕi (τ) which usually depends on
the features of node i. τij specify the time gap between the time when node i gets
infected and when node j gets infected given that node i infects node j. The travel
times τij are themselves the sum of the random incubation time T (0)

i and a random
time ai drawn from a uniform distribution U

[
0, T

(1)
i

]
where T (1)

i is the duration of
the time node i is infectious. The distributions of τij maybe different for in- and out-
household contacts since infected individuals eventually stay home depending on the
severeness of the disease progression. For a directed path γij = (i = k0, ...kl−1, kl = j)
from i to j containing no nodes from R0 we define the distance between i and j as

dγ (i, j) =
l−1∑
l=0

τklkl+1
. The set of all such directed paths from i to j is denoted by

Γij.We define the time of infection T̃j (I0, R0) for a node j ∈ S0 which is in the the
forward connected susceptible component F (I0) of I0 as

T̃j (I0, R0) = min {dγ (i, j) : i ∈ I0 and γ ∈ Γij} (2)

Note that we consider only paths avoiding the initial removal node set R0. Since the
progression from state 0 to states 1 and 2 depends only on xi the epidemic process
is well defined via the sets At = It ∪ Rt =

{
i ∈ S0 : T̃i (I0, R0) ≤ t

}
∪ I0 ∪ R0 and

Rt =
{
i ∈ S0 : T̃i (I0, R0) + T

(0)
i + T

(1)
i ≤ t

}
∪
{
i ∈ I0 : T

(0)
i + T

(1)
i ≤ t

}
∪ R0. Note

that the set of active infected nodes It is given by At −Rt.
The feature space F may include socio-economic and health related features like age,
gender, profession, social activity, comorbidities and household index of an individual
as well as the timings defining the progression of the disease like incubation time and
duration of the infectious period. Furthermore we assign to the feature space indicator
variables wether an individual will be discovered via testing or contact tracing and put
under quarantine which affects the duration of the infectious time for out-household
contacts. We also assume that when a case is detected the whole household goes
under quarantine. Contact tracing itself can be described as an additional tracing
respectively search process Bt taking place on At and affecting the epidemic process
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itself since traced individuals will be quarantined. Bt can be again viewed as a first
passage process and is mainly specified by the distribution of the random time lag it
takes to discover an infected offspring of an detected index case.
For clarity and simplicity of the exposition we have not given the description of the
above epidemic process in the most general form. Natural extensions which are also
implemented in the simulations include time dependent additional removal sets due
to ongoing vaccinations and time dependence of the kernel functions due to changes
in state imposed contact restrictions or process dependent changes in the behavior of
the infected and susceptible population affecting the contact kernels. We also have
not described additional state refinements like hospital stay, ICU treatment or death
which are part of the actual simulation model.

2.2 Simulations and data

Simulations for realistic settings of the parameters and node features where made
on regional and country level for Germany and Poland and included up to 80 mil-
lion individuals. Data for the age structure and household composition where taken
from German microcensus data and for Poland from census and recent registry data
provided by GUS (Polish Statistical Office). Medical data for the progression of the
disease like incubation time, time till hospitalization and mortality where taken from
referenced in literature for Germany and from a large set of individual patient data for
Poland [1] provided by the Polish National Institute for Public Health (NIPZ). The
patient data set was also used to estimate the efficiency of contact tracing and testing
for Poland and their changes over time. Computations for Poland with a population
of 38 millions where made on the lower Silesia supercluster computation grid and
runtimes for a single trajectory on a single core for a time span of two year took at
most 10 minutes. The program code was written in JULIA and is public available on
github. The simulation itself is taking place in an event driven manner. Due to the
model definition the number of secondary out-household infections generated by an
infected individuals i (the out- household outdegree with respect to the contact graph)
is for large n Poisson distributed with parameter λi =

∫
F

κ (xi, y) dµ (y) where µ (y)

is the empirical probability measure of the features over the sample population. The
number of in - household infections is sampled from a multinomial distribution over
the household member according to the corresponding household kernel κH . Hence
when a new infected node is born we first sample the number k of secondary cases
from Poiss (λi) , than sample k individuals from V with respect to the induced mea-
sure 1

λi
κ (xi, y) dµ (y) and finally sample for each of those k individuals the generation

times τij and update the list of forthcoming events. Figure 1 shows key aspects of the
algorithm in a schematic way.

3 Results

Besides forecast on medium and short time which are provided at a weekly base to the
public German - Polish Forecast Hub (https://kitmetricslab.github.io/forecasthub/forecast)
and to the Polish Ministry of Health, our main focus is on the in depth understanding
of the impact and efficiency of nonpharmaceutical intervention measures (NIP) on
the progression of the epidemics . This requires multiple large scale simulation over
large parts of the parameter space specifying the NIP measures like contact reduction,
contact tracing success probability , testing rates and the probability to get tested
and corresponding delay times. We also include the effect of contact tracing via the
COVID 10 smartphone tracing app which is widely used in Germany. Results are
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presented in the form of heatmaps over the parameter space for the main observables
of prevalence (at the end of the epidemics or after a year) , peak height of the epi-
demics and duration of the epidemics. In Fig 2, 3 and 4 we show some examples of
the simulation outcomes. One of the key onbservations is the steepness of the phase
transition when passing the critical line of reproduction number R = 1 which makes it
difficult to get lasting and stable control of the epidemic without strong NPI measures
(see also [2])
Besides the numerical simulation outcomes we also obtained theoretical results for
the prevalence and peak time in the limit of n → ∞. The theoretical results extend
known theoretical work on phase transitions, size of the giant component and first
passage percolation for heterogenous random graphs (see [3] and [4]) to our setting.

Figure 1: Schematic representation of the simulation algorithm
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Figure 2: Prevalence as a function of contact reduction and tracing efficiency for two
different in - household attack rates (detection prob. via testing is assumed to be 0.6
and time lag for testing and contact tracing 2 days)

Figure 3: Duration till zero cases for the same setting as in picture 2. Simulations for
Poland with mean over 100 runs per parameter combinations

Figure 4: Maximal number of daily incidence as fraction of the population.

5


	 Introduction
	Introduction
	Methods
	Methods
	Model description
	 Simulations and data

	Results

	Results
	References

