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Abstract
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Selective Data Editing of Continuous Variables with Random Forests in Official
Statistics

by Sarah BOHNENSTEFFEN

Technological advances and new demands due to economic and socio-cultural
changes regularly challenge the National Statistical Institutes to adapt to their evolv-
ing environment. The application of machine learning methods as important and
promising tools for official statistics are discussed in the context of these changes, in
the context of opportunities arising from new digital data sources, and considering
the difficult task of having to balance a variety of quality requirements at national
and international level. Selective statistical data editing is an approach to detect in-
fluential units and select them for manual follow up in order to make the process
more efficient. In this thesis, a simple and a two-step approach are developed to
apply random forests to selective editing of continuous variables in the context of
short-term business survey data. We present a score function based on decision for-
est models which allows for an efficient selection of units relevant for the estimation
of the final estimates. The approach is found to be applicable also at the disaggre-
gated levels of the autonomous communities and economic branches.

El avance tecnológico y nuevas demandas debidas a cambios económicos y so-
cioculturales desafían regularmente a los Institutos Nacionales de Estadística a adap-
tarse a su entorno en constante evolución. La aplicación de métodos de aprendizaje
automático como instrumentos importantes y prometedores para las estadísticas ofi-
ciales se analizan en el contexto de esos cambios, en el contexto de las oportunidades
que surgen de nuevas fuentes de datos digitales, y teniendo en cuenta la difícil tarea
de tener que equilibrar una variedad de requisitos de calidad a nivel nacional e inter-
nacional. La depuración selectiva es un conjunto de técnicas para detectar unidades
influyentes y seleccionarlas para el seguimiento manual a fin de hacer el proceso
más eficiente. En este trabajo se desarrolla un enfoque simple y uno en dos eta-
pas para aplicar los bosques aleatorios a la depuración selectiva de variables con-
tinuas en el contexto de datos de encuestas económicas coyunturales. Se presenta
una función de puntuación basada en modelos de bosques aleatorios que permite
una selección eficiente de unidades relevantes para la estimación de los agregados
finales. El enfoque desarrollado también es aplicable a los niveles desagregados de
las comunidades autónomas y ramas de negocio para los datos usados.
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Chapter 1

Introduction

The application of machine learning solutions in official statistics has become an
extremely prominent topic during the last years. Just recently, the UNECE Statistical
Data Editing Virtual Workshop 2020, held in early September, was dominated by
topics like machine learning and artificial intelligence and how to use these methods
in the context of the official data production process.

Machine learning is not exactly a new topic. The fast expansion of computer
power and the improvements in information infrastructure development in the last
half-century have made the implementation of existing data analysis techniques
possible and have provided a breeding ground for the development of many other
methods. Coupled with the ever-increasing volume of available data and the de-
velopment of more complex forms and data formats, especially unstructured data,
techniques such as support vector machines, neural networks, random forests and
others have become increasingly popular in recent decades (Biamonte et al., 2017).
However, National Statistics Instituts (NSIs) must overcome particular challenges
when developing new methodologies and applying new methods. As a legally le-
gitimized bureaucratic organization, their processes are subject to certain rules and
standards. Their data are an important basis for decision-making for political, eco-
nomic and social actors in democratic societies. As part of the European Statistical
System, the NSIs are committed to quality and stand for the accuracy and reliability
of the information they provide (MacFeely, 2016).

On the other hand, the NSIs are also called upon to provide relevant and up-
to-date information and, in addition, to improve timeliness and punctuality of their
production and dissemination practice. This puts them in the difficult situation of
competing with non-public data providers on the one hand, and on the other, having
to manage the conflict that emerges between these goals and further requirements
such as cost efficiency of their work and to maintain their professional indepen-
dence despite the dependence on public funds (Ljones, 2011; Sæbø and Holmberg,
2019). Thus, this thesis focuses on a point where a huge potential for optimization is
identified, namely the reduction of the necessary manual resources through a more
efficient data editing process. This could also improve the quality of the data, either
directly through the increased coherence of the process or indirectly by reallocat-
ing manual resources to areas where the data production process can be improved
otherwise.

This work was developed in the context of an internship at the Methodological
Department at National Statistical Institute of Spain (Statistics Spain) under the su-
pervision of Dr. David Salgado. The unit develops new statistical methodologies
for a standardized official statistical production, as well as unified software tools for
their implementation. The questions that this thesis is based on are how the official
statistical data editing process can be improved by using machine learning methods, namely
random forests, and which challenges are associated with the application of such methods
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in the context of the official statistical production. As part of data processing, editing is
a crucial and resource-consuming part of the work of the national statistical offices
(Arbues et al., 2013). Erroneous values in the raw data must be detected and treated
so that the data meet quality standards when they are further processed in the esti-
mation phase. Especially in business surveys, editing and imputation is identified
as one of the most resource and time-consuming survey processes. Over the years,
the statistical offices have learned from their experience that particularly influential
observations can be identified which are responsible for much of the inaccuracy in
final estimates (Scholtus et al., 2014). Techniques ranking observations according to
their potential influential errors in order to select units for further interactive editing
are jointly known as selective editing. To develop a random forest model that is be
able to compute the score function on which selective editing is based, data from the
Short-term Business Survey SSAI conducted by Statistics Spain will be used. The
idea is to compute the error between the raw turnover value which was reported
by the units and the edited turnover value after it was manually revised. This error
combined with the sample weight of each unit can then be used to predict which
units should be given preference in further manual editing steps. Random forests
seem to be a convincing method for this, as they can be used with both numerical
and categorical predictors for both regression or classification tasks. Random forests
can handle non-linear features and they are robust to the inclusion of irrelevant pre-
dictors, they are parallelizable and scalable (Cutler et al., 2011).

To address the questions and presented issues this thesis is structured as follows:
chapter 2 outlines the theoretical background of data editing in Official Statistics.
It discusses the position of NSIs between national and European responsibility, ex-
plains the quality requirements for official statistics and the resulting challenges and
introduces selective editing. Finally, the selective editing approaches used in this
thesis are presented. Chapter 3 introduces the Services Sector Activity Indicators as
data basis and presents characteristics of short-term business survey data. Chapter
4 gives a short introduction to what machine learning is, provides an overview of
the current state of research of machine learning in official statistics, explains the
concept of random forests and gives some notes on the software used. In chapter 5
the practical steps and the respective results of both approaches are explained. Our
investigation was originally intended to analyse the application of random forests
to continuous variables such as the described error variable. It turned out, however,
that the chosen target variable is rather a semi-continuous variable, so a second, two-
step approach was developed to adapt the procedure to the properties of the data
and to do justice to its characteristics. Chapter 5 explains the practical steps and the
respective results of these two approaches, before the final chapter summarizes the
work and its results, discusses open points and presents remaining questions.
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Chapter 2

Theoretical Framework: Data
Editing in the context of National
Statistical Institutes

2.1 Quality Requirements in Official Statistics

The work of the NSIs is exposed to constant changes in external circumstances. Tech-
nical innovations, the emergence of new data types and dimensions (Big Data, social
network data) and changing socioeconomic realities shaped by globalization. In the
last years, NSI have dealt with a lot of important questions like how to make use of
Big Data, how to reduce the response burden for firms and individuals or how to
assess quality of non-survey data sources (MacFeely, 2016).

A constantly changing environment is also a challenge for other institutions and
companies. Nevertheless, National Statistical Institutes face particular challenges
due to their quality standards, bureaucratic organizational structure and legal re-
sponsibilities. In the following sections, we will therefore start by discussing the
role and working environment of Statistics Spain (which can largely be generalized
to other NSIs), in order to gain an understanding of the relevance of an efficient data
editing process.

2.1.1 National Statistical Institutes as bureaucratic organizations

Similarly to statistical systems in other countries, the Spanish National Statistical
System is responsible for the compilation of both official statistics for state purposes
and European statistics. Analyzing the organizational set-up of the structures of
Statistics Spain, many similarities can be found with the prototype called bureaucratic
organization as described by Weber (1978, p. 217ff.):

In accordance with the principle of administrative records, all types of adminis-
trative acts, decisions and instructions are recorded in writing. Bureaucratic organi-
zations also keep the principle of separating resources and staff: The administrative
staff does not own the material means or resources of the administration. Further-
more, each office has its own specific sphere of competence. Offices are organized in
a hierarchical way, meaning that each lower office is under the control and supervi-
sion of a higher one. At Statistics Spain, this principle is applied at the geographical
level in the provincial delegations that supply the central services, as well as within
the central office, in which the general subdirectorates are subordinate to the depart-
ments, and which again are divided into different work areas.

The administrative staff is selected on the basis of the technical qualifications of
the candidates, which are "tested by examination or guarantied by diplomas certify-
ing technical training, or both" (Weber, 1978, p. 220), which in case of Statistics Spain
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corresponds to the implementation of a civil service entrance examination (oposi-
ciones) with minimum qualifications.

The legitimacy of a bureaucratic organization is based on constitutional princi-
ples and the rule of law (Olsen, 2008). As part of the national statistical system,
the National Statistical Institute of Spain (Statistics Spain) has the goal and the le-
gal mandate to provide social and political actors with high quality statistical in-
formation. These tasks and responsibilities are assigned to Statistics Spain within
the framework of specific regulations and legal norms. Statistical activity for State
purposes is anchored in the Spanish Constitution (149.1.31., 1978) as an exclusive
competence of the State. Statistics Spain is a legally independent administrative
autonomous institution assigned to the Ministry of Economic Affairs and Digital
Transformation, via the Secretary of State for the Economy and Business Support.
The legal basis of the work of Statistics Spain is the Law 12/1989 of 9 May 1989 on
the Public Statistical Services (LFEP).

According to bureaucratic organizational theory, bureaucratic organizations en-
joy technical superiority over other forms of organization and are designed to ensure
efficiency and economic effectiveness (Kim et al., 2014). Nevertheless, this form of
organization has been subject to sharp criticism in the 70s and ever since. The term
in its negative meaning refers to a form of organization characterized by slowness
and inefficiency. Contrary to Weber’s idea, who described bureaucratic organiza-
tion as the most modern and efficient form of organization, numerous studies on
bureaucracy in public research institutions suggest that these are inefficient because
of their public nature, which is associated with red tape, the negative by-product of
bureaucracy (e.g. Coccia, 2009; Crow and Bozeman, 1989). Bureaucracy seems to be
an obstacle to keeping up with market-oriented companies and is accused of hin-
dering innovation and devouring resources. A particularly dominant argument is
that bureaucratically organized processes are lengthy and therefore do not offer the
possibility of reacting appropriately quickly and flexibly to changes.

On the other hand, the under-complexity of "bureaucracy bashing" (Olsen, 2008)
and the lack of a clear definition of the term has been criticized and shifting the fo-
cus from seeing difficulties to seeking chances, it has been argued bureaucracy and
efficiency or technology should not be seen as antagonists, but as complementary.
Taking standardization that comes with bureaucracy as an example: the effort re-
quired to develop a standard suitable for all procedures in a given scope can seem
time consuming and burdensome. Things change if it is seen as part of the solu-
tion. Combined with international cooperation, standardization can even increase
the flexibility of the institution, as well as its ability to respond to change, because
instruments developed e.g. by other NSIs may be easily adaptable to and compat-
ible with existing structures. For example, the Common Statistical Production Ar-
chitecture (CSPA), a standard to share common functionalities inside the European
Statistical System, is based on this argument (Vale, 2014).

A study of the interaction relationship between bureaucracy and information
technology, suggests that the use of IT, which led to improved decision-making,
could reduce bureaucracy and sectarianism in organizations in the long run. The
study also concludes that the technical competence of staff is positively correlated
with the time saved through the increased use of IT systems (Kim et al., 2014). The
idea of mechanical rationalization as a common goal of bureaucracy and IT agrees
with the Weberian image of the bureaucratic organization as efficient through tech-
nical competence and the above mentioned results suggest that technical innovation
could be a key element enabling bureaucracy to counteract the problems it inher-
ently faces. Without going into further detail, the relationships described will be
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kept in mind in the following remarks.

2.1.2 Quality Dimensions (Im-)balance

To understand the working environment of NSIs beyond their organisational struc-
ture, it is essential to understand the complex situation of their areas of responsi-
bility. The NSIs have a shared competence and responsibility between their gov-
ernmental mandate in the national context on the one hand and their integration
into the European statistical network on the other. It is generally agreed that pub-
lic research institutions play an essential role in modern economies and are also an
integral institution for a functioning democracy, which is why independent data of
the highest quality are of enormous importance (MacFeely, 2016, p. 789). With the
transition to a data-driven management of public administrations, the dependence
on high-quality data is increasing and becomes crucial to invest public money ef-
fectively (Ljones, 2011, p. 27). The role of NSIs as European statistical producers
gives rise to diverse quality requirements. While the emphasis on quality has al-
ways been an important characteristic of official statistics, quality dimensions have
been extended and made more specific in the last years (Ljones, 2011, p. 25).

A classic approach to detect statistical error sources and properties in the con-
text of quality assurance is the Total Survey Error (TSE) Framework (Biemer, 2010;
Groves and Lyberg, 2010), which divides error sources into the two main dimensions
measurement and representation. Following the terminology of the TSE Framework,
the problem addressed in this thesis is situated on the measurement side between
measurement and edited response, where either a measurement error or a processing
error can occur. Both are not necessarily detected in the editing process; the true
value always remains unknown. Nevertheless, there may be errors that occur sys-
tematically or at least with a certain frequency in relation to other known variables.
The approach can therefore be seen as an attempt to learn from predictable errors in
this part, so that editing resources can be efficiently directed to where we can most
likely expect these errors. The TSE framework has also been the basis to make it
broader by including errors arising from the use (and integration) of different data
sources like administrative data.

Nevertheless, such a perspective would not be sufficient to describe the compre-
hensive quality requirements for the work of National Statistical Institutes like INE.
As member state of the European Union, Spains National Statistical Institute is part
of the European Statistical System (ESS). The ESS is a partnership between Eurostat
and the statistical authorities at the national level, which is responsible for the de-
velopment, production and dissemination of European statistics. The legal basis of
european national statistical institutes like Statistics Spain is the Regulation (EC) No.
223/2009 on European Statistics (EU, 2009), which is derived from the Treaty of the
Functioning of the European Union.

The two pillars of quality assurance in the European Statistical System are the
European Statistics Code of Practice1 (Eurostat, 2017) and the Quality Assurance
Framework of the European Statistical System2 (ESS, 2019). The ES CoP in its lat-
est version from 2017 is an update of the first one originally adopted in 2005. It is
a self-regulatory tool, meaning that its assessment is done by the institutions that
implement it. In part, it coincides with the guidelines laid down in the European
Statistical Law, such as professional independence, the coordination role of Eurostat
and the NSIs statistical confidentiality, but it also complements them. In its current

1From here on referred to as ES CoP.
2From here on referred to as ESS QAF
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form, it consists of the following 16 principles. Principles 1 to 6 refer to the insti-
tutional environment, while principles 7 to 10 refer to good practices regarding the
statistical processes and principles 11 to 15 are concerning the statistical output.

Principle
1. Professional

Independence
Professional independence means independence of statistical au-
thorities from other policy, regulatory or administrative depart-
ments and bodies, as well as from private sector operators.

1b. Coordination
and
cooperation

The coordination of all activities for the development, produc-
tion and dissemination of European statistics is ensured by the
National Statistical Institutes at the level of the national statisti-
cal system and by Eurostat at the level of the European Statistical
System.

2. Mandate for
Data Collection
and Access to
Data

Statistical authorities have a legal mandate to collect and access
information from multiple data sources, like data from adminis-
trations, enterprises or households, for European statistical pur-
poses.

3. Adequacy of
Resources

The human, financial and technical resources available to statisti-
cal authorities are sufficient regarding both their magnitude and
quality to meet European Statistics requirements.

4. Commitment to
Quality

Statistical authorities are committed to quality and an organiza-
tional structure and procedures are in place to manage, monitor
and improve quality management.

5. Statistical
Confidentiality
and Data
Protection

The privacy of data providers (households, enterprises, adminis-
trations and other respondents), the confidentiality of the infor-
mation they provide and its use only for statistical purposes are
absolutely guaranteed.

6. Impartiality
and
Objectivity

Statistical authorities develop, produce and disseminate European
Statistics respecting scientific independence and in an objective,
professional and transparent manner, in which all users are treated
equitably.

7. Sound
Methodology

The overall methodological framework used for European Statis-
tics follows European and other international guidelines, and
good practices. It is based on the application of standards and ad-
equate tools, constantly striving for innovation. Continuous train-
ing for their staff is implemented.

8. Appropriate
Statistical
Procedures

The implementation of appropropiate statistical procedures
throughout the statistical processes is ensured by making use
of definitions and concepts of data for non-statistical purposes,
pretesting questionnaires, establishing cooperations and agree-
ments with data holders, the collection of metadata and transpar-
ent revisions.

9. Non-excessive
Burden on
Respondents

The response burden is proportionate to the needs of the users and
is not excessive for respondents. European Statistics demands are
limited to the absolutely necessary and the statistical authorities
monitor the response burden and set targets for its reduction. Ad-
ministrative and other data sources are used whenever possible.
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10. Cost
Effectiveness

Available Resources are used effectively by optimizing the use of
information and communication technology, improving the sta-
tistical potential of administrative and other data sources and the
implementation of standardized solutions. The use of resources is
internally and externally monitored.

11. Relevance European Statistics are based on the needs of users. For this end,
procedures are in place to identify users needs, consult users, to
monitor the relevance of existing statistics and monitor user satis-
faction.

12. Accuracy and
Reliability

Source data, integrated data, intermediate results and statistical
outputs are regularly assessed and validated to ensure that Euro-
pean Statistics accurately and reliably portray reality.

13. Timeliness and
Punctuality

Statistics are released in a timely and punctual manner, at a stan-
dard daily time, following the release calendar. Divergence from
the dissemination time schedule is publicised in advance, ex-
plained and a new release date set.

14. Coherence and
Comparability

Statistics are coherent and consistent internally, over time and
comparable between regions and countries. Statistics from the dif-
ferent data sources and of different periodicity are compared and
reconciled. Cross-national comparability of the data is ensured
by periodical exchanges between the ESS and other statistical sys-
tems.

15. Accessibility
and
Clarity

Statistics are presented in a clear and understandable form, re-
leased in a suitable and convenient manner, available and accessi-
ble on an impartial basis with supporting metadata, using modern
information and communication technology and open data stan-
dards.

TABLE 2.2: Key Points of the European Statistics Code of Practice
Principles (Eurostat, 2017)

Although a typical association of quality measures in the context of data would
be statistical concepts like accuracy, looking at the principles outlined above, one can
see that quality is a much wider concept in the context of official statistics. Moreover,
it is constantly reviewed, enhanced and made more concrete. This is why the ES
CoP is periodically updated since its adaption in 2005. Due to their comprehensive
nature the ES CoP principles remain rather superficial and of general nature, which
may make them difficult to apply and assess (Eurostat, 2017; Revilla and Piñán,
2012). In order to facilitate the implementation of the ES CoP and to give concepts
a more concrete form, the ESS QAF offers a collection of methods and tools, giving
examples of good practices.

A further problem related to this extensive collection of principles is their multi-
dimensionality. Although the ESS QAF provides guidance for its implementation,
concepts of different quality dimensions may appear contradictory in practical ap-
plication. This makes them difficult to apply concurrently. Saebo (2019) points out
that there are in fact trade-offs between different principles of the quality frame-
work. In identifying conflicting pairs of principles, it is noted that compliance with
the various principles must be carefully balanced. Professional independence and
impartiality may be challenged by the principle of cooperation, for example, or may
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conflict with the principle of relevance. It is immediately apparent that principles of
accuracy (P12), timeliness (P13) and cost-effectiveness (P10) are competing concepts
(Sæbø and Holmberg, 2019).

Furthermore, difficulties in adhering to the concept of cost-effectiveness inten-
sify problems of contradictions in the relationships between other principles. The
greater the scarcity of resources, the greater the difficulty in compliance with other
principles. This leads to structural dependencies on the government, in a direct way
from public budgets or in an indirect way due to the need of less cost-intensive data
sources, like the administrative data, the obtaining of which, however, is often asso-
ciated with a huge bureaucracy effort, and whose concepts and collection methods
are again based on the government’s design. Surveys collected by NSIs themselves
have the advantage that the NSIs can decide on how the data are generated (e.g.
decisions about the survey format, components of the questionnaire or the survey
cycle). Conversely, this competence goes hand in hand with the responsibility to
subject all phases of data generation to quality analysis and to actively use the meta-
data of the production process to optimize procedures. In addition to cost effective-
ness, there are challenges such as keeping up with other statistics producers in terms
of timeliness (P13) of the released information. This is why it has been issued that
independence, the first of all ES CoP principles, is at special risk in a situation like
this and it has been criticizes that the ever increasing demands are not matched by a
sufficient willingness to provide NSIs with (financial) resources (Ljones, 2011).

We conclude that National statistical offices such as Statistics Spain find them-
selves in the challenging situation of having to meet quality requirements in several
dimensions at once and that innovative methods and strategies are required in order
to jointly implement those sometimes conflicting quality principles.

2.2 Selective Editing

The totality of tasks performed by Statistics Spain related to the statistical produc-
tion can be defined in 8 different phases according to the Generic Statistical Business
Process Model (GSBPM). The GSBPM is an official standard in the area of statisti-
cal production, which describes the necessary activities and tasks to transform raw
data into statistical information (UNECE, 2019a). The eight phases of the statistical
production process are to specify needs, design, build, collect, process, analyse, dis-
seminate and evaluate. Each phase is composed by different subprocesses. These
are arranged in a logical and typical sequence, but they do not represent a linear
process, nor do all steps necessarily have to be carried out. The GSBPM rather aims
to provide a guideline including all the possibly necessary tasks, which can be re-
cursive.

2.2.1 Data Editing within the Statistical Production Process

Out of the eight phases, the subject of this thesis is related to the fifth phase (process).
The processing phase is made up of numerous sub-processes and its standardization
is of particular difficulty, due to the high degree of heterogeneity which arises from
the fact that processing tasks are applied to a huge variety of (survey) data and are
carried out by different offices and sections inside Statistics Spain. Data processing
describes the cleaning of data observations and their preparation for analysis. To
this end, data has to be revised and cleaned, errors must be detected and edited, so
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that new variables can be derived from the data, weights can be calibrated and totals
can be estimated.

More precisely, selective editing is carried out in the subprocess 5.1 Edit & Im-
pute (UNECE, 2019a). As part of data processing, editing is a crucial and resource-
consuming part of the work of the national statistical offices. A state-of-art study
among statistical agencies carried out in 2007 found out that about half of the re-
spondents spend more than 50% of their overall resources on E&I (Luzi et al., 2007,
p. 50). The incoming raw data usually contains erroneous values, which must be
detected and treated so that the derived aggregated data, that will later be dissemi-
nated, meets the quality standards. Error treatment in the course of the data editing
process has been done exclusively manually for many years, and although that is
not the case anymore, manual error detection and recontacts/follow-ups are still
widely used. In manual editing the correction of erroneous values is archived by
recontacting the reporting entity (e.g. companies). However, recontacts increase the
response burden and are also associated with slowing down the editing process (De
Waal et al., 2011). This is one reason that makes the editing process extremely time
and resource consuming (De Waal, 2013). On the one hand, the detection and treat-
ment of errors are essential steps for the accuracy and reliability of the outputs; on
the other hand, this time-consuming practice collides with other quality dimensions
described above, such as cost effectiveness or timeliness.

Selective Editing are techniques derived from the need of balancing these differ-
ent quality requirements. Over the years, the statistical offices have learned from
their experience that particularly observations can be identified which are respon-
sible for much of the inaccuracy in final estimates. This means that not all errors
need to be corrected (Granquist, 1997), however reluctant this may sound at first
in the context of producing high quality statistics. The errors that indeed need to
be treated are described as the so-called influential errors, which are found to have a
substantial impact on publication figures for those variables (Luzi et al., 2007). Se-
lective editing techniques rank observations according to their potential to contain
influential errors in order to select units for further interactive editing.

We keep in mind that selective editing is one of various E&I (Editing and Im-
putation) strategies, that can be used in combination with other editing techniques
to make the data editing process as efficient and quality-assuring as possible. As
visualized in figure 2.1 below, selective editing is applied after an initial E&I, and
is followed by interactive E&I applied to the units that are detected as influential,
as well as an automatic E&I step that creates the micro-edited files, before macro
editing is applied 3. The selection of influential errors for interactive treatment is a
so-called control element in the process flow, as it defines the conditions for deciding
which of the alternative following tasks are carried out (UNECE, 2019b).

3For an overview of these editing modalities, see for example De Waal et al., 2011.
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FIGURE 2.1: SDE Flow Model for Short-Term Business Statistics (UN-
ECE, 2019b)

As described by Pannekoek et al. (2013, p. 523) and later outlined in the Generic
Statistical Data Editing Model (GSDEM) of the UNECE, the activities related to the
data editing process can be described as statistical functions to provide a common
terminology. Considering the three statistical data editing functions "review", "se-
lection" and "treatment", that group activities to be carried out in the E&I process,
selective editing can be categorized as a review function, and combined with a set
threshold as a selection function, because it selects specific fields or units for further
treatment (UNECE, 2019b).

2.2.2 Score Functions as Instruments of Selective Editing

So how are influential units actually detected? The score function approach is a way
of implementing the basic idea of selective editing: reducing resources allocated to
interactive manual editing without compromising accuracy. Score functions are a
tool to prioritize units according to the expected importance of inspecting it, that is,
the expected benefits of correcting errors in this unit (Hedlin, 2003; Scholtus et al.,
2014). To calculate this score for a unit as a whole (the global score value), local score
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values are computed for all the relevant items of a unit. The generic way of creating
a global score function for a unit k and quantitative variable y can be described in
four consecutive steps:

1. Computation of anticipated values of the variables of interest ŷk

2. Computation of local (item) score values sk

3. Computation of global (unit) score values Sk.

4. Determination of threshold values Ck .

1. Item score functions are based on the relation between the raw value of the
variable y and the anticipated value ŷ. Compared to e.g. imputation models, the
computation of anticipated values in this context is usually of rather low quality, it
could for example just be defined as the edited last month value of the variable.

2. Based on this value, the local (item) score functions are created. It has the
following generic form:

sk(yk, ŷk) = Fk(yk, ŷk)xRk(yk, ŷk),

representing both the risk component Rk and the influence component Fk (De Waal
et al., 2011). The former refers to the likelihood of a potential error while the latter
refers to the contribution of unit k to the final target estimate. Between the different
possibilities to calculate the score functions, some of them explicitly include the risk
component as the probability of a value to be erroneous, while other approaches are
limited to the comparison of observed and anticipated values. It has been found that
the latter tend to produce high rates of false alarms (Scholtus et al., 2014).

3. In a third step the local score functions are combined to a global unit score
function. To compute the unit score function different weights can be assigned to
the local scores which are associated to different variables that might be considered
less or more important for the global score. There are again different functions that
can be used to generate the global score values. With skj being the item scores of
item j of unit k, simple ones would be for example the sum of item scores function
Sk = ∑j skj, the max function Sk = maxj skjor the euclidean score. Those can in turn
be unified for example by one of the more sophisticated Minkowski functions of
order α , which can also include a weighting wp (Hedlin, 2008):

S(α)
k = (

P

∑
p=1

wp[s
(p)
k ]α)

1
α , f or α ≥ 1

4. Based on the global score, units are ordered according to their expected im-
pact on target estimates. A threshold Cs is established to select those observations
with a score value above this threshold for interactive editing. Thresholds can be set
based on the desired level of quality, so that errors in not selected units only have a
negligible influence on the publication cell aggregates (Di Zio and Guarnera, 2013).
Simulations studies, based on unedited raw data and a fully manually reviewed
data set, are usually carried out to find an appropriate threshold value. To this end,
after calculating the global scores for the raw data, it is simulated that only the first
n observations are manually reviewed by replacing their raw values by the edited
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data, while the rest of the records keeps their raw values. This procedure is repeated
for different values of n. The target measures are then calculated for the mixed data
sets with n edited units and compared to the target measure of the fully edited data
(De Waal et al., 2011).

At Statistics Spain, in particular from 2013 onwards, efforts have been made to
revise the editing and imputation strategies according to the frameworks proposed
in the EDIMBUS manual as part of a modernization process. Efforts were made to
parameterize the editing strategies and to extend the EDIMBUS structure, for exam-
ple by including editing tasks performed already during data collection (Rama and
Salgado, 2014). In this context, Arbues et al. (2013) have developed an approach
that considers the minimization of editing resources while assuring data quality in
the selective editing process from the perspective of a mathematical optimization
problem. An optimization problem is the problem of finding the best solution from
all feasible solutions and seeks to minimize a loss function. This functions maps
values onto a number intuitively representing some "cost", in this case, manual re-
sources and loss of quality. In the approach, different kinds of optimization problems
are formulated, depending on which kind of auxiliary information out of the three
types longitudinal, cross-sectional and multivariate is used. According to this ap-
proach, the local score functions are calculated as a conditional expectation in terms
of the auxiliary information available. The optimization approach to selective edit-
ing has been implemented for example in the E&I strategies of the Spanish Industrial
Turnover Index and Industrial New Orders Received Index survey (López-Ureña et
al., 2014).

The idea followed in this thesis joins the quest for an efficient data editing phase
and proposes the application of random forest algorithms in the construction of
score functions. A score functions can be naturally understood as "an estimate of
the error affecting data" (Di Zio and Guarnera, 2013). Random forests can be used
to model these errors between raw and anticipated values, on which the local score
functions are based. The approaches used in this thesis will be explained in the
following section, before the SSAI survey data are introduced as our data basis in
chapter 3.

2.3 Approaches to the Application of Random Forests in Se-
lective Editing

The two approaches described in the following are inspired by the optimization ap-
proach to selective editing (Arbues et al., 2013), mentioned in the previous section.
Since the error between raw and edited turnover values

ek = yraw
k − yed

k

is a numerical quantity, the initial purpose of this thesis project was to use regression
forests, i.e. random forests with a quantitative target variable. To train the forest, the
available data was divided in a training set and a test set based on the correspond-
ing months the data originates from. The local score function was expressed as a
conditional expectation in terms of the auxiliary information Zcross

k available:

sk = dk ·E
[
|yraw

k − yed
k |
∣∣Zcross

k

]
, (2.1)

where dk is the design weight of the unit k.
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The idea was to predict the error in turnover of the test month based on the raw
turnover values and the auxiliary information. However, the first attempt to define
an error variable and try to adjust a random forest didn’t lead to the expected results,
and prediction accuracy fell short of expectations. For a detailed analysis of the steps
and results of this first approach, see chapter 5.

After a closer analysis of the characteristics of the data and the distribution of
the error a second, more sophisticated approach was developed. The first method-
ological decision was to treat separately the observations with missing values in the
turnover variable, on which the target variable is based. For the rest of the observa-
tions we implement a two-step random forest approach to accommodate the semi-
continuous distribution of the variable, which turns out to have a large number of
observations with value 0 and a small continuous part.

We define eobs
k = δk · εobs

k , where δk is a Bernoulli variable with values 1, if the
observation is erroneous (with a probability pk) and 0, if the raw value is correct,
e.g. the error is 0 (with probability pk). The first step uses a two-class decision forest
to determine if an observation is predicted to be class 0 or class 1. For the second
step, the continuous variable εobs

k represents the magnitude of the error in case it is
produced. To estimate this second step target variable, a regression forest is used,
given that the output variable is continuous. The idea is to use random forests in two
steps to model these two random variables based on the available raw information
as follows:

1. A binary variable representing the unit type is constructed to model δk by clas-
sifying units as type correct or error. Then, a random forest can be built to model
this variable and the class probabilities pk are computed using the available
auxiliary information.

2. To model |εobs
k | we build the second step random forest based on the subset of

the data that is of type error.

It had to be kept in mind that this approach substantially reduces the number
of observations for the regression forest, which is why the data basis is enlarged by
data from previous months and a longitudinal information is added to the auxiliary
information Zaux

k . Besides, the target variable of the classification forest is highly
imbalanced. Solutions to this problem and the related methodological decisions are
described in chapter 5. The two models are now described by p̂k ≡ E[pk|Zaux

k ] and
E[|εobs

k |
∣∣δk = 1, Zaux

k ]. Hence, the constructed score function sk is expressed by

sk = dk ·E
[
δobs

k · |εobs
k |
∣∣Zk

]
= dk ·Eδk

[
Eεk

[
δk · |εobs

k |
∣∣δobs

k , Zaux
k

]]
= dk · p̂k ·Eεk

[
|εobs

k |
∣∣δobs

k = 1, Zaux
k

]
, (2.2)

with p̂k being the estimated probability that observation k has an erroneous
turnover value (unit type error).
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Chapter 3

Data basis: Short-term Business
Survey Data

The analysis related to our selective editing approach will be carried out based on
data from the Services Sector Activity Indicators (SSAI). The SSAI survey is a short-
term business statistic conducted by Statistics Spain (2020).

Short-term business statistics are aimed at providing information on the business
cycle of an economy and are usually carried out monthly or quarterly. In contrast to
household surveys, business surveys are characterized by a relatively small number
of variables which use to be mainly numerical. Units can be difficult to delimit due
to their complexity and evolving nature. The population size is rather medium or
small for business surveys (Scholtus et al., 2014). Due to the short term cycle, time
series data from previous waves of surveys are quickly available for short term sur-
veys, even if the survey has not been implemented for a long time. For short-time
business surveys, results are disseminated relatively shortly after the data collection,
in case of SSAI 51 days after the last day of the reference period on average (Statistics
Spain, 2019). Disseminating with the shortest possible delay is necessary to ensure
the relevance and timeliness of the published data, but also sets a limit on the time
that can be invested in data editing, making an effective data editing process essen-
tial. De Waal et al. (2011, p. 6) state that due to numerous edit rules and relatively
large numbers of errors compared to social surveys, business surveys are associated
with a especially high effort in data cleansing. On the other hand, they also have a
characteristic that makes the use of selective editing particularly fruitful, namely the
usually large skewness of distributions of the important variables. That means that a
few observations have a major impact on the aggregated results (such as companies
with high turnover and large number of staff), while the impact of smaller compa-
nies is comparatively low. This benefits the implementation of the fundamental idea
of identifying influential units and makes selective editing an especially attractive
technique.

3.1 Data basis: The SSAI Short-term Business Survey

The Services Sector Activity Indicators SSAI (IASS in spanish, from ’Indicadores de
actividad del sector servicios’) measure the short-term evolution of the activity of
companies operating in the non-financial market services in Spain. The activity in-
dicators, which are reported in nominal terms, are based on two main variables:
turnover and employed personnel. The variable Turnover consists of the amounts
invoiced by the company, during the reference period, for the provision of services
and the sale of goods. Employed personnel comprises both wage-earning and unpaid
personnel like working family members (Statistics Spain, 2019, 2020).
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In order to obtain this data, an ongoing survey is conducted, collecting data from
more than 28,000 companies that operate in the sector every month. SSAI provides
information as to CNAE 2009 classification of economic activities1. The population
scope is made up of companies whose economic main activity is classified as Trade,
Transport and Storage, Accommodation, Information and Communications, Profes-
sional, Scientific and Technical Activities or Administrative and Support Services
Activities (sections G to J, N or M in the CNAE 2009 classification). Units are selected
out of the frame via stratified random sampling (Statistics Spain, 2019, 2020). The
survey was first launched in 2000 and is available for all divisions since 2002. Since
then, some methodological changes have been made, such as the expansion of the
sample size in 2005 in order to be able to publish results at regional level. Since 2013,
results are presented as chain-linked Laspeyres indices, in order to measure varia-
tions as compared to the base year. As of the reference month January 2018, indices
are calculated and published in base 2015, in order to comply with the requirements
established in Eurostat Regulation 1165/98 on short-term statistics (Statistics Spain,
2019).

3.2 Data Collection Process

In the case of the SSAI data collection methods of primary (direct) data collection
are used, as it is a survey. The data are collected by completion of the questionnaire
by the respondent, using one of the following methods: Internet (via the online tool
of IRIA system), e-mail, fax, telephone or postal mail, so we are looking at a mixed
form of data collection (Statistics Spain, 2020). As we can see, the actual SSAI survey
consists of only a few variables, basically the turnover, the number of unpaid per-
sonnel and the number of paid personnel, differentiating between employees with
fixed or temporary contracts. Nevertheless, during the collecting and editing pro-
cess, a lot more (meta-)data are generated and stored in internal variables, which
will be called paradata variables. Like described in chapter 2, the data which is col-
lected and recorded by the regional offices, will be already edited in the collection
process. The paradata therefore contains information like the date when data was
recorded, when it was edited, if specific comments where added in the editing pro-
cess or by which data editing actors the data was reviewed. The information from
these survey variables is furthermore complemented by identification information,
for example about the branch according to the CNAE 2009 and the autonomous
community which the units belong to, etc.

Statistics Spain stores variables from different statistical operations and related
information in a data repository which is a key–value store, in order to have a stan-
dardized database providing the necessary data for the data editing phase or any
other internal operation based on those data. The repository contains files with dif-
ferent kinds of information related to each statistical operation. More precisely, it
contains files with the recorded unedited raw values (FG), files with the values, that
have been edited in the field but not validated by the data managers (FD) and files
with the final microdata after data editing has been performed (FF). This final ver-
sion of the data is the basis for the aggregates and indices disseminated by Statistics
Spain. In addition, there are files that contain the value of paradata variables (FP),
the value of a direct identification variable (FI), the value of a validation interval for
editing during collection (FL) and a value for the cross-sectional selection of units
with influencing errors (FT).

1National Classification of Economic Activities, Spanish version of the NACE Rev.2
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Variable name Description

Survey variables

b1_raw_t Raw turnover value
c11 Unpaid staff
c121 Paid staff with fixed contract
c122 Paid staff with temporary conctract
b1_raw_t_1 Raw turnover value from last month
b1_ed_t_1 Edited turnover value from last month

Identification and additional variables

existencias Value of inventory
exist Dichotomous variable, presence (1) or absence (0) of existencias
cnae CNAE 2009 Classification
CCAA Autonomous Community
CodProvincia Identification code for the province
CodTame Code for tame
rama Internal economic activity classification similar to CNAE
factor Survey weight of the unit

Paradata variables

codUGestion Code for the unit responsible for data collection
varGestion Variable related to the data administration
CodAgente_1 Code for the agent responsible for recording each unit
Usuario Code for the agent that added comments
fechaRecepcion Date of data reception
fechaGrabacion Date of recording data
fechaDepuracion Date of editing data
observaciones_X List of variables containing various types of comments related to

the E&I process, like recontacts, observation of irregularities, etc.

Derived variables

dias_Rec_Grab Number of days between data reception and recording
dias_Grab_Dep Number of days between data recording and editing
early_Rec Dichotomous variable indicating if data was receipt in the first half

of the month (1) or not (0)
early_Grab Dichotomous variable indicating if data was recorded in the first

half of the month (1) or not (0)
early_Dep Dichotomous variable indicating if data was edited in the first half

of the month (1) or not (0)
CodProvincia1 First digit of identification code for the province
CodTame1 First digit of identification code for the tame
cnae1, cnae12,
cnae123

First, first two, and first three digits of identification cnae classifi-
cation code

b1_relDiff_1 Relative change in turnover compared to the previous month
errorb1_abs Absolute error in turnover between raw and edited turnover value
b1_error Dichotomous variable indicating if the raw turnover value differs

from the edited value (1) or not (0)

TABLE 3.2: Variables used in the random forest models
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In the context of this thesis, four different types of variables will be used for
the selective editing algorithm: (1) survey variables, (2) identification variables, (3)
paradata variables from the editing process and (4) derived variables which are gen-
erated based on the previous variables in order to increase the performance of the
selective editing algorithm. The variables used in the selective editing analysis are
listed in Table 3.2. In addition, some longitudinal variables are added, even though
most of the variables are from the reference month. To compute the continuous tar-
get variable, the edited turnover value from the final files is used to calculate the
error in the turnover value.

|errorb1t| = |b1ed
t − b1raw

t |

. The second target variable is created by dichotomizing the former, based on the
presence or absence of an error.

b1error =

{
0 if |errorb1t| <= 0.01,
1 if |errorb1t| > 0.01

In this thesis, SSAI data from the September 2019 until March 2020 are used. The
random forest built in the first approach is based on the data of only one month,
namely the SSAI data from February 2020, while the data from March is reserved as
test data. In the second approach, due to the reduced sample sizes resulting from
the two-step procedure, the data basis was expanded with information from further
months and longitudinal information was included. Therefore, data from month
of September was only used to derive the longitudinal b1_relDi f f _1 variable, the
months October 2019 until February 2020 served as training data, and March was
again used as test data.

3.3 Data Maturity

In a short discussion we would like to address the issue of data maturity. While
we have seen above that there are strict requirements and standards regarding in-
terpretability and standardisation for published information and variables, internal
variables, which we use in the random forest models, are generated based on the
needs and purposes of each department or unit. Although the data repository at-
tempts to standardise the information and paradata it contains, many of the vari-
ables and their background are not self-explanatory and they result difficult to inter-
pret and use for staff that is not familiar with the details of the steps carried out in
each operation.

Two major problems seem to be 1. the history of the paradata (it is not clear
when and for what purpose information was created) and 2. the documentation of
the data, codebooks are still incomplete and for some internal variables no meta-
information is available. In addition, new types of variables are added over time,
while others disappear, but this fluctuation is not explicitly documented. This is
particularly problematic for the application of automated procedures, as the advan-
tage of self-improvement is lost if these circumstances mean that the data basis must
repeatedly specified manually.
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Chapter 4

Machine Learning and Random
Forests in Official Statistics

In this thesis, random forest algorithms were selected from a variety of possible
machine learning methods to address the presented research question. This chapter
contains introductory remarks on what is machine learning, a short comment on the
application of machine learning in official statistics, it discusses the most relevant
methodological aspects of random forests, and presents two different approaches of
applying these for selective editing in the context of the data used in this thesis.

4.1 Short notes on Machine Learning

Machine learning (ML) generally describes "a set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict future data,
or to perform other kinds of decision making under uncertainty" (Murphy, 2012).
So the main idea is to use algorithms to parse the data, learn from it, and be able
to make suggestions or predictions about something. The flexible approach of ML
makes it fit to analyse large amounts of data, to deal with uncertainty and to process
high dimensional data (Barber, 2012). Since data processing technology is providing
increasingly better resources for machine learning, e.g. through extended comput-
ing power, the popularity and application of these techniques have increased enor-
mously in recent years. Its advance is not limited to a specific field or discipline, but
has a huge range of applications.

Machine learning techniques can be divided into two main types, namely super-
vised and unsupervised learning techniques. In supervised learning, each observa-
tion is associated with a response yk, the target variable. The aim is to model the re-
lationship between the response and the measurements of the predictors, or predict
the response for new observations (James et al., 2013). One is therefore interested in
methods that work accurately with previously unseen data (Barber, 2012). Unsuper-
vised learning is even more widely applicable, as there is no need define a desired
output. Unsupervised learning algorithms search for patterns based on the set of
features of interest in the data, but without a labelled response variable. This style
of learning, of discovering knowledge, is sometimes compared to the way that hu-
mans and animals learn. To reduce complexity and to make it easier, techniques like
PCA can be used which reduce the dimensionality of the data (Murphy, 2012). From
a probabilistic point of view, supervised learning can be understood as conditional
density estimation, while unsupervised learning is described as unconditional den-
sity estimation. Supervised learning usually only tries to predict one variable, which
is why it corresponds to univariate probability models, while unsupervised learning
would require multivariate probability models (Murphy, 2012).
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A common problem mentioned in the context of machine learning is overfitting.
An overfit model is one that is based too strongly on the observed data and therefore
performs well only on the training data but can’t produce accurate results for pre-
viously unseen data. Model performance should therefore also always be assessed
when applied to unknown data. To gain insights about the quality of the models
already in the training phase, before choosing a final model which is applied to test
data, resampling methods like bootstrapping or k-fold cross validation can be used.
Resampling models repeatedly fitting a model while intentionally leaving out part
of the data, which can then be used to analyse the model performance (Boehmke
and Greenwell, 2019).

4.2 Machine Learning in Official Statistics

In recent years the application of Machine Learning techniques has also become
more and more popular among statistical agencies. Although the different statis-
tical institutions face a variety of difficulties and business environments, they share
common types of problems. In the last years ML methods started to be widely rec-
ognized in the context of the official statistical production and statistical agencies
increasingly seek the advantages of their applications, like their high potential to in-
crease efficiency, reduce response burdens and emerging opportunities to use new
digital data. The UNECE High-Level Group for the Modernisation of Official Statis-
tics has included Machine Learning as one of its modernization projects in 2019,
which is being continued in 2020. The potential use of Machine Learning for Of-
ficial Statistics was recently addressed in a webinar series of the UN World Data
Forum in July 2020 entitled "Adding Value to Statistical Data Production through
Machine Learning". Within this framework, several Machine Learning sprint events
have been organized and progress reports have been published in the last two years.
In the context of these initiatives, various pilot projects were carried out and experi-
ences of different statistical authorities were collected mainly in three areas: Classi-
fication and Coding, Editing and Imputation, and Imagery (Julien, 2019).

As an example, the US Bureau of Labor Statistics uses Automated Coding for
their Survey of Occupational Injuries and Illnesses in which text entries have to be
converted into standard codes. These tasks, which had been done completely manu-
ally until 2014, could be automatized thanks to a machine learning model, which was
trained with a subset of features, such as words or pair of words and their related
codes. Not only did both developed autocoders, one based on logistic regression
and another on based on a deep neural network, save a massive amount of resources
(manual effort, time). Contrary to the reservations that machine learning algorithms
could worsen the quality, it could also be shown that the autocoders based on ML
methods are more accurate than manual coding (Measure, 2017). Criticism related
to machine learning also states that its methods have a black box character and are
often uninterpretable (Molnar, 2020). This aspect must always be taken into account
in the context of official statistics in order to maintain the trust of its users. Another
bottleneck that seems to slow down the application of ML in official statistics is a
lack of expertise and experience. Even if many ML methods and advantages are
superficially known, those responsible may lack the time to familiarize themselves
sufficiently with the subject area and find areas of application in their own area of
responsibility (Beck et al., 2018).

In a 2018 study, staff members of the Federal Statistical Office of Germany in-
vestigated to what extent the application of machine learning is widespread in their
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own statistical institutions, in the national statistical offices of the European coun-
tries, as well as in other selected countries such as Canada or the USA (Beck et al.,
2018). They have also looked into the question of which techniques are used and for
which areas and tasks they are applied. For this purpose, 39 international statistical
institutions were contacted, the majority of which are NSIs from the EU Member
States. It is found that a considerable proportion (21 of 33) of the institutions that
provided an answer, is already involved in machine learning projects, although they
find themselves in different project phases. Most of the reported 136 projects (45%)
are still in an experimental stage, while about 19% are in development and 15% are
already in productive use. The remaining 21% of the projects were only formulated
as ideas in that moment (Beck et al., 2018). As for the machine learning methods
that were applied, random forests were by far the most common method, but neu-
ral networks and support vector machines and other decision tree methods were
also found to be very popular. The implementation of ML techniques can be found
across a variety of tasks among various phases of the GSBPM (Design, Collect, Pro-
cess, Analyse, Evaluate), but especially in the process phase. The most frequently
mentioned application types were automatized classification, the imputation of val-
ues and microdata linking.

Despite the widespread use of ML techniques in E&I strategies, most of the ex-
amples are related to the imputation of values and relatively little can be found about
the use of ML for the detection of non-sampling errors. A few projects of this kind
can still be found: The Federal Statistical Office of Switzerland was testing different
ML methods such as generalized boosted models, Random Forest, Neural networks,
Naive Bayes or Tree algorithms to perform the detection of suspicious responses.
Observations are classified as suspicious or non-suspicious units which the aim of
recontacting those where anomalies were found. At Statistics Norway, Classification
by Random Forests are explored for editing purposes in register based salary statis-
tics (Beck et al., 2018). Some more generalized software solutions that also include
the detection of suspicious units have been developed. One example is CANCEIS,
which was developed by statistics Canada, but is already experimented to be used
also in other statistical agencies, like for example Stats NZ or the Federal Statistical
Office of Germany (Lange, 2020; Spies and Lange, 2018; Stats NZ, 2019).

4.3 Random Forest Methodology

Random forests are a non-parametric machine learning method first introduced by
Breimann (2001). They are a supervised learning method, which means that both
input and output are explicitly indicated in the training data. The learning set D is
therefore a set of pairs of input vectors and output values D = {(x1, y1), ..., (xn, yn)}
where xk ∈ X and yk ∈ Y, with X being the input space, Y being the output space
and N being the size of the training set.

4.3.1 Construction of Random Forests

Random forests are based on decision trees, which can be either regression or classi-
fication trees. Therefore, they are an ensemble method, which combines information
of multiple models, in this case within a specific technique, decision trees.

Decision trees are a tool to predict the generally consist of a root node, which is
the top node, any number of internal nodes and at least two leaf nodes, which are
the terminal nodes. Nodes can be understood as questions that are asked and which
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classify an observation according to its answer. These can be categorical questions
like the CNAE of a company, or questions related to a continuous variable, e.g. if a
company has more than 100 employees or not. Based on the answers, each observa-
tion will end up in one of the leaf nodes. Each leaf node is associated with a value of
the target variable. This value is derived from the values of all the observations of
the training data which belong to each leaf node, usually the mode of the categories
in case of classification, or the mean value of a numeric values in case of regression
trees. This value will therefore be the predicted value for a new observation that
ended up in the corresponding leaf node (Moisen, 2008). Decision trees are built by
recursive binary splitting or partitioning, which means that the feature space is split
up by splitting a node into its two descendants. Which split is chosen depends on
the evaluation of all possible splits of all the predictor variables which is based on a
criterion like the residual sum of squares for regression or a node impurity measure
like gini index for classification (Cutler et al., 2011; James et al., 2013).

Classification and regression trees (CART) have a number of attractive advan-
tages such as, as their name suggests, that they can be used for the prediction of
both categorical and numerical variables. Predictors as well can be categorical or
numerical variables or even a mixture of both. CARTs are said to be easy to build,
easy to use, and, if the trees are small, they are intuitively interpretable, a property
that is hard to find among machine learning algorithms. Moreover, they inherently
perform a feature selection, whereby irrelevant variables are basically filtered out
(Hastie et al., 2009, p. 352). However, decision trees have a weakness that prevents
them from being perfectly suitable and from being able to compete with other ma-
chine learning algorithms, namely accuracy. Their predictions are related to high
variance, which makes them insufficiently robust.

Random Forests solve these problems in two ways. It is known that high vari-
ance low bias problems can be solved by bootstrap aggregating (bagging). If this
technique is applied to decision trees, it means that not only one tree but a whole
forest is constructed. The target variable to be estimated is then obtained by aggre-
gating the results of all trees. To be able to build several trees from the same sample,
subsamples are drawn with replacement during the bagging process, so that each
tree is based on a slightly modified data basis. This results in more divers trees and
the variance is reduced on average. Nevertheless, the trees will still be very simi-
lar, as they all take the same set of variables into account. This will be especially
problematic when a few predominantly important variables are present in the data,
which are then virtually always selected.

It has been shown that the generalization error in case of random forests is based
on the quality of the individual trees and the correlation between the trees in the
forest (Breiman, 2001). The generalisation error for a supervised learning model m
such as a random forest algorithm can be expressed by

Err(mD) = EX,Y{L(Y, mD(X))},

with L being a loss function based on e.g. the mean squared error for regression
or another measure of discrepancy between its two arguments. In order to prevent
the correlation between the trees and decrease the error, random forests use a second
technique, whereby they do justice to the "random" in their name: For the evaluation
of each split, a new random sample of m predictor variables is taken into account as
eligible variables 1. In this way, not all trees will be able to make a similar selection

1Other ideas of introducing randomness, like for example to build each whole tree on a random
selection of predictors, have also been discussed (Ho, 1995).
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and will be decorrelated. The two basic approaches of bagging and introducing
randomness in feature selection make random forests more robust and stable. On
the downside, random forests are less interpretable than simple decision trees. Still,
their flexibility and simple application makes them one of the most popular machine
learning models.

4.3.2 Features and Properties

The characteristics of the random forest will now be explained a little further before
we address hyperparameter tuning.

Out-of-bag Validation. Validation is an important aspect when constructing ran-
dom forest models. It is not a good idea to base the evaluation on training data
itself, as it can lead to selecting a model that overfits the data. some of the available
data has been put aside as test data, but these are first used to verify a pre-selected
model. Other mechanisms should therefore be used during the modelling process.
Resampling methods like k-fold cross validation or bootstrap can be used for this.
Both don’t require leaving out an extra part of the data for validation (Boehmke
and Greenwell, 2019). An advantage of models like random forests that build boot-
strap samples, is that the out-of-bag (OOB) samples, e.g. those who were left out
at the construction of a particular forest, can be used to estimate the generalization
error by using trees for which the observation is out-of-bag for the prediction of the
response of a units (Cutler et al., 2011). Of course, other validation methods like
cross-validation or bootstrap can also be used. Concerning the question which of
the three methods is most recommendable, it has to be said that the computational
cost of OOB validations is drastically lower, since these OOB samples, as mentioned,
already exist as in-built feature of the method. Kuhn (2013) find that there are very
little differences between using OOB or 10-fold cross validation in a study they did
based on CART trees. Comparing cross-validation and bootstrapping, another study
finds that K-fold CV tends to have higher variability than bootstrapping. Because
of repeated observation, bootstrapping can increase the bias of the error estimate.
However, this issue is usually negligible with large data sets (Boehmke and Green-
well, 2019).

Variable Selection and Importance. The selection of suitable variables is always a
difficult task in the modelling process, especially in new areas and when one can
only rely on theoretical assumptions to a limited extent. Decision trees, as men-
tioned above, have the excellent property of automatically selecting variables in the
modelling process and are thus reasonably resilient to the inclusion of irrelevant
predictors. When working with a collection of bagged trees in random forests it
becomes impossible to understand the relation between the response and the pre-
dictors (James et al., 2013; Kuhn and Johnson, 2013). However, we can still evaluate
the importance of each predictor by summarizing information from the trees in the
forest: For regression trees, we can average the total value that the RSS decreases
due to splitting with a predictor pk over all B trees. Equivalently the reduction of the
Gini index can be averaged over all trees to determine the importance of a variable
in a classification forest. It should be kept in mind that strongly correlated variables
can lead to the overestimation of the importance of a variable that is not important
but correlated with an important variable. The number of split variables also has an
important influence on the importance values (James et al., 2013). Even if the for-
est deals flexibly with irrelevant information, it can be useful to filter out so-called
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near-zero-variables from the model in the preprocessing process. Some packages
offer this option as an automatic option before the model building process as it is
in easy way of making the model less costly and more interpretable (Boehmke and
Greenwell, 2019).

Other characteristics. Apart from being applicable to both regression and classi-
fication problems, random forests also naturally handle multi-class problems. They
can be used for high-dimensional data and they are scalable to large learning set.
Random forest also naturally include a proximity measure, which is based on the
number of trees in which two observations end up in the same leaf node compared
to all the trees of the forests. Proximity measures can for example be used to detect
outliers or to impute missing values. Random forests are furthermore easy to run in
parallel, as all trees are created independently from each other (Cutler et al., 2011;
Kuhn and Johnson, 2013; Louppe, 2014).

4.3.3 Hyperparameter Tuning

Apart from the characteristic that Random Forests imposes few requirements on the
data, the method is at times described as a ’off-the-shelf’ tool, insinuating that it can
be applied with comparatively little tuning of the available parameters. While Kuhn
(2013) and others find that tuning parameters have relatively little influence on the
error metric, there are still some parameters that can have an important impact on
the outcome and performance of the random forest. In the following we will men-
tion those parameters and discuss how optimal values can be found based on the
remarks of Probst (2019).

Number of trees: One important parameter the researcher has to decide on is the
size of the forest. By definition, prediction gets more accurate with an increasing
number of trees. The number is not a tuning parameter in the true sense, since the
mathematical optimum would be an infinitely large number. Nevertheless, grow-
ing an unnecessarily big number is computationally expensive, while at a certain
point an enlargement of the forest does not further profitably reduce the error, which
would be inefficient. It can therefore be reasonable to establish threshold

C >
Errntree(m)− Errntree+1(m)

Errntree+1(m)
,

where ntree is the number of trees in a forest and the threshold C expresses the min-
imum relative error reduction that we consider worth adding an additional tree.
Visual evaluation of the error curve as a function of the number of trees also uses
to be a helpful tool to detect when the curve flattens out noticeably. On the other
hand, the number of trees to be grown can be limited by external factors like time
resources or computing power.

Number of variables to be considered for each node (mtry): Like explained before, ran-
dom forests prevent its trees to be highly correlated by considering only a random
selection of variables at each node. The optimal number of variables to be consid-
ered has to be found between 1 and the total number of independent variables p
available in the data set. If the behaviour of the error was previously analysed it can
also be useful to find min(Errmtry) for mtry ∈ {a, b} by establishing a range {a, b}
with a > 1 and b < p to make a hyperparameter grid search more efficient. Taking
all variables into account would be equivalent to bootstrap aggregating (bagging). In



Chapter 4. Machine Learning and Random Forests in Official Statistics 24

the literature they can be found different recommendations about the approximate
optimal value regarding the number of variables (p). While some authors recom-
mend mtry = p

3 other say that the optimal value is likely to be around
√

p, the latest
standard is to use the former for regression and the latter for classification forests.
Some R packages like randomForest have an inbuilt tool to find the optimal value for
mtry in the concrete data set. This tool starts to calculate the error for an default value
of variables and allows to set the relative improvement in OOB error as a threshold
for the search to continue.

Minimal node size: To not grow the random forests to its maximum complexity, a
minimal value for the node size is usually established, that is, how many observa-
tions of the training data have to end up in a leaf node. If the number would be be-
low this threshold, a node cannot be split any further. To reduce the minimum node
size reduces the complexity of the tree and lowers computational costs, but specific
pattern may not be represented. Increasing the minimum value allows for higher
complexity of the trees but carries the risk of overfitting. While under-complex trees
tend to have higher bias, over-complex ones should come with a high variance.

Additional parameters can be the splitting rule and the sample scheme: Like ex-
plained in the construction of random forest, usually a bootstrap sample is drawn
with replacement. However, it is possible to sample a number of observations with-
out replacement. In this case a sample fraction should be established. The default
value for the sample fraction when is replacement is disabled is 0.632 in some pack-
ages, which corresponds to the percentage of the data that is represented on average
in a bootstrapped sample. The splitting rule makes different variations of the RF
rather than being a hyperparameter. For classification forests, the minimal gini im-
purity is often used as a criterion to select a variable for splitting the node out of
all variables available. For regression trees, the weighted variance is often used as a
splitting rule although it is biased towards variables with many categories, alterna-
tives are p-values from a global test, or randomizing the subset of possible splitting
values of each variable with the extratrees option, which makes computation more
efficient.

4.3.4 Treatment of missing values

When building a forest, possible missing values in the data must be taken into ac-
count. When a categorical variable has missing values in the training data, these can
just be defined as a new class of the variable. When data is missing in a numerical
variable, the forest can’t handle it, hence the values must be imputed. Apart from
imputing missing values with mean or mode of the respective variable, random for-
est offer another possibility using the proximity measure mentioned above: A first
forest is built based on low-quality mean values. Starting from this, the proximity
measures are calculated and the imputed value is replaced by a better estimation
based on a proximity-weighted average. This procedure is repeated during a few
iteration (Cutler et al., 2011). However, this procedure has not yet been used in this
study, it was decided to impute values manually. Missing values of categorical pre-
dictors were therefore just assigned to class "*". For numerical predictors, a missing
raw turnover value was imputed with 0. This imputation is justified by the fact that
the edited value is the one that an expert finally assigns. The resulting target vari-
able error will therefore be equal to the value of the edited turnover value for these
observations. Units with a missing value in the edited turnover value are discarded.
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Missings were also found in the variables dias_Rec_Grab and dias_Grab_Dep, which
where imputed by 60, which was the maximum value of days observed in the data.
Missing values in the variables c11, c121 and c122 where replaced by 0, a missing
sampling weight by 1.

4.4 Computational considerations

The programming tasks related to this thesis were carried out in the programming
language R. Packages like caret or MLR offer a set of functions to provide a stan-
dardized interface for building machine learning models. They include standard
task like regression and classification along with their corresponding preprocessing
tasks, evaluation and optimization methods to automate standard tasks. As for Ran-
dom Forests, the R environment offers different packages, of which one of the most
common ones is randomForest (Liaw and Wiener, 2002), but there is also a number of
other packages available, for an analysis of their advantages and disadvantages see
Wright and Ziegler (2015). A problem of some of the older R implementations of RFs
is that they were optimized for large samples, but not for working with a large num-
ber of predictors and can cause very long computation times. We also experienced
this problem, building a forest with 500 trees for all of the approximately 30,000 ob-
servations in one month and including about 200 variables has resulted in the com-
putations regularly exceeding 72 hours with randomForest. The ranger package,
which was finally used in this thesis, was developed to overcome this problem and
has shown that it is on a par with randomForest in terms of out-of-bag prediction
error and variable importance results (Wright and Ziegler, 2015). ranger has shown
to be considerably faster than other packages, especially for dichotomous features,
while also using less memory that e.g. randomForest (Wright and Ziegler, 2015).
Similar calculations (with about 30,000 observations) could now be finished in a few
hours. However, these problems are mainly a challenge in the design phase, when
many forests have to be grown in order to evaluate tuning parameters and are less
impactful once the final models have been selected.
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Chapter 5

Results of Random Forests applied
to Selective Editing

As mentioned in chapter 2, two approaches have emerged from the original prob-
lem definition. Therefore, the proceeding and results of the initial approach are pre-
sented first. In the course of this, emerging problems will be discussed and the
methodological decisions that finally led to the development of the second approach
will be explained.

5.1 Simple regression forest

In this first part of the analysis, a random forest model was applied, with the abso-
lute error of the turnover errorb1_abs as the target variable. As the target variable is
continuous, we model a regression forest. In the course of the search for a suitable
model, different variants were analysed, differing as well in the variables included
in the model and in the choice of parameters.

In a first variation of the forest, dichotomized comment variables for each in-
dividual user were included in the model, indicating if a particular user made a
particular type of comment or not. Since in this case almost all of these variables
became near zero variance variables and did not turn out to have any importance,
we decided to aggregate the number of comments of each type. The dichotomized
comment variables are referring only to a certain unit and show if a comment was
made without containing information about which user was involved. At this point,
no longitudinal information was included in the model.

5.1.1 Random Forest based on Cross-Sectional Information

To get a first impression of how many trees are necessary, quality measure curves
were computed based on default regression forests models, analysing the good-
ness of the model by computing the performance measures by the number of trees.
The used measures are the root mean square error (RMSE), the mean absolute error
(MAE) and the squared correlation between the observed and predicted values R2.
As trees in a forest are grown one by one, these measures can be easily computed.
Given that the error naturally decreases, the objective of the generated graphs is just
to give a visual hint on how many built trees are worth the computing power and
time.

The graphs in figure 5.1 show the evolution of the RMSE and the MAE as the
number of trees is incremented1. As it appears, the reduction of the error due to
an increasing number of trees begins to stagnate from about 400 trees onwards in

1For related additional graphics, like the R2 curve, please see Appendix A



Chapter 5. Results of Random Forests applied to Selective Editing 27

both measures, even a little earlier in terms of the RMSE. We will therefore build
regression forests with 400 trees in order to keep the computational effort as low as
possible while still being able to expect decent results.

FIGURE 5.1: RMSE and MAE by number of split variables (mtry)

In a similar manner, we are analysing the quality measures for different values of
mtry. While analysing the number of trees was aimed at finding a minimal number
of necessary trees to reach good performance, the goal of analysing mtry is to be able
to limit a range of well-performing values, so that the values can be selected more
specifically in the search grid. A grid contains all possible combinations of values
defined for the tuning parameters represented in it with the aim of comparing the
model performance of the different models which result from the grid combinations.
Hence, to limit the value range of mtry was especially useful to reduce computation
time when a high number of variables was used.

Looking at figure 5.2 regarding the number of split variables, it seems like in
this case lower errors can be expected for smaller values mtry. We will therefore
concentrate on a range of low mtry values and space them out evenly between 1 and
20 in the grid, which will be built to compare models with a variety of parameter
combinations.

FIGURE 5.2: RMSE by number of split variables (mtry)

The first forest building process is based on a sample of size n = 27585 and 45
predictors. No pre-processing is applied and 5-fold cross validation is used, which
leaves sample sizes of 22068 in each fold. To evaluate the performance of different
parameter values like in the minimal node size, mtry or the split rule and to identify
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the best performing model out of all combinations, a grid search was performed.

FIGURE 5.3: Performance of all combinations of tuning parameters
tested for the simple regression forest

Figure 5.3 is a way of representing the model performance measured based on
the RMSE of the different models evaluated in the grid search. As the graphic shows,
the variance and extratrees were tested as split rules, minimal node sizes between
3 and 7 and mtry values spaced out between 1 and 20 were evaluated. The best
combination of hyperparameters according to the error is circled.

Results of the best model

The characteristics of the model which was selected as the best performing model
are presented in table 5.1. The Pearson correlation between the between real and
predicted error values is 0.217.

mtry split rule node size RMSE R2 MAE
15 variance 5 2167934 0.18365950 138126.8

TABLE 5.1: Best performing model for cross-sectional information

The performance measures are important tools to evaluate which of several com-
parable models (with the same number of variables, the same underlying observa-
tion, etc.) is the best model. However, they don’t provide any information which
would let us determine if the selected model is a good model for our purposes.
Hence, we need to proceed to perform further analysis. Important insights can be
gained by comparing the predicted error in turnover with the real value of this error.

To this end, we first compare the distribution of the predicted errors in turnover
with the real errors in turnover. This can be done for example with a box plot, or
by directly overlaying the density plots of both distributions, like in figure 5.4. Both
distribution don’t seem to be terribly different, yet, we can see that the predicted
values are more widespread and have a less asymmetric distribution.
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FIGURE 5.4: Comparison between real and predicted error distribu-
tions

Another option to evaluate the model is to compare the values in a scatter plot.
The scatter plots in figure 5.5 show the different parts of the same plot: The first
one shows all the values, while the second one only shows values < 100,000 to il-
lustrate the relation between both variables despite the asymmetrical distribution.
The scatterplot does not show a clear correlation between the two variables, in fact
the points look rather randomly distributed. It is also noticeable that for many units
whose error is actually zero, an error greater than zero is predicted.

FIGURE 5.5: Relation between real and predicted errors in turnover

This result is in no way satisfactory. As far as the variables used in the model are
concerned, figure 5.6 represents the variable importance and shows the raw turnover
value as the most important split variable in the forest. The next most important
variables, such as the number of employees or the CNAE classification, follow with
much lower index values.
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FIGURE 5.6: Importance indices of the most important variables used
in the model

However, it must be mentioned in this context that the importance values are not
very reliable if the whole model does not work well.

5.1.2 Random Forest based on Cross-Sectional and Longitudinal Infor-
mation

The performance of the previous results was not as good as it ought to be, which
is why in the next step, longitudinal information will be introduced to the model in
form of two variables. Using information from the previous month t− 1, the relative

variation of the turnover value |Y
raw
t −Yed

t−1|
Yed

t−1
will be included in the model, as well as

the previous months edited ("true") turnover value itself.
A reasonable number of trees to be build (in this case 300) was obtained in the

same way as in the previous section by analysing the error curves in relation to the
number of trees. Concerning the number of split variables, it now seems that lower
errors are expected for high values of mtry

2.

FIGURE 5.7: RMSE by number of split variables (mtry)

2The related graphics can be found in Appendix A
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Due to observations that had to be excluded because of missing values, the sam-
ple size has decreased a little compared to the models describes in the previous sec-
tion, the sample size is now n = 24782. In return, the model does now include 47 pre-
dictors. Using 5-fold cross-validation, the following combinations of the parameters
were created and compared in the resulting models. Like the figure shows, models
with variance as split rules performed generally better than those with split rule ex-
tratrees. As already expected, the models reach better performance with higher mtry
values.

FIGURE 5.8: Performance of all combinations of tuning parameters
tested for the simple regression forest with longitudinal variables

Results of the best model

The selected best fit actually considers all 47 variables for each split, which is equiv-
alent to bagging and problematic in terms of the correlation between the trees in the
forest. Besides, the selected model has a minimal node size of 3, meaning that the
model is more complex than a default one, which would be have a minimal node
size 5.

mtry split rule node size RMSE R2 MAE
47 variance 3 2057632 0.2691465 95530.74

TABLE 5.2: Best performing model for cross-sectional and longitudi-
nal information

The Pearson correlation between the between real and predicted error values is
0.582, so considerably higher than in our last model with only cross-sectional in-
formation. Analysing the density distributions in figure 5.9 both distributions look
similar, however the boxplot reveals that again the distribution of predictions is less
skewed than the distribution of the real error values.

Looking at the scatterplot in figure 5.10 with plots the datapoints of both the
predicted and real error values, a very conspicuous pattern can be observed. It gives
the impression that a third quantity interacts with the relationship and splits it in
two parts. In the following section we will try to find ways to better represent the
characteristics of the underlying data in the forests.
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FIGURE 5.9: Comparison between real and predicted error distribu-
tions

FIGURE 5.10: Relation between real and predicted errors in turnover

Regarding the importance of the variables, the raw turnover value has been dis-
placed from its position as the most important variable by the edited turnover value
of the previous month. It is now only in second place but still considerably impor-
tant. Instead of one variable, as in the previous model, three variables are now of
increased importance, since the difference between the turnover value and that of
the previous month is also important in the third place. We therefore conclude that
the inclusion of the two new variables with longitudinal components was a useful
extension of the model.

FIGURE 5.11: Importance indices of the most important variables
used in the model
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5.2 Two-step random forest approach for semi-continuous data

Although random forest is an extremely flexible method with regard to the charac-
teristics of the data and doesn’t require strict assumptions about its distribution, the
previous approach has not produced the desired results. It seems like there are two
main issues that prevent the models from adjusting to data successfully:

1. Observations with missing values in turnover

2. Semi-continuous target variable

The target variable error in turnover value has missing values due to missing val-
ues in the raw turnover variable. Like explained before, the value of the error variable
was therefore set to the edited value of turnover, which is equivalent to set missing
variables in turnover to 0. However, the distribution of the error for these observa-
tions is quite different from the distribution of errors in the rest of the data, which
can be seen clearly, in both the density plot and the boxplot in figure 5.12. The need
to build a separate forest for these observations was then derived from the findings.

FIGURE 5.12: Distribution of error in turnover by unit types in the
training data

But even if we analyse observations with missing values in turnover separately,
another problem remains: The target variable is not just highly skewed, but can in
fact be described as a semi-continuous variable. The vast majority of the observa-
tions (in the observed months around 85% - 95%) already contain a correct turnover
value in the raw data and therefore have an error equal to 0. Hence, the error vari-
able can be disaggregated into a binary part and a positive-valued continuous part:

errorb1 ∈ 0∪ {LO, .., UP},

where the finite lower bound LO = 0.01 and the infinite upper bound UP = ∞. To
address these issues caused by these characteristics of our data, the alternative two-
step approach, that treats the data in three separate parts, is applied. The different
forests are built based on the different types of units in the data, see figure 5.13 for a
schematic representation.
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unit type = b1_NA?

regression forest
for b1_NA

unit type = b1_error?

classification forest (1. step)
classification forest (1. step),

regression forest (2. step)

yes no

yes no

FIGURE 5.13: Decision forests built depending on the unit type in the
two-step approach. Own figure.

Splitting up the data into three types of units according to the value in the turnover
variable gives rise to a new problem: The data basis is significantly reduced, espe-
cially for erroneous observations which represented about 6% in the original training
data, and the units with missing values in turnover, which represented about 9% of
the data. The data base was therefore amplified by data from additional months and
the available unit by type are represented in figure 5.14. Like this, nnoNA = 144652
for non-missing observations, from which nb1error = 3619 and nNA = 9906 observa-
tion with missing value in turnover were available to train the three forests.

FIGURE 5.14: Distribution of unit types in the training data

5.2.1 Step 1: Classification forest for subset without missing value in
turnover

Like mentioned previously the first step of the two step approach aims to classify
the observations into those with an error in the turnover error variable (yes) and
those without (no), leaving those observations with a missing value in the turnover
variable out of the analysis.

Fitting a simple classification forest to this data with n = 144652 using 5-fold
cross-validation yields promising results with an overall accuracy of 0.946. How-
ever, if we take a closer look at the classification tree that has been built, a fundamen-
tal problem becomes apparent. In this context we analyse the table of incorrectly and
correctly classified observations, the so-called confusion matrix.

predicted
error correct

true error 92 1269
correct 47 22955

TABLE 5.3: Confusion matrix of the forest applied to the imbalanced
data set
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It seems like the classifier worked well for observations with a correct turnover
value, as only 47 of 23002 correct observations have been wrongly classified as er-
roneous observations, which corresponds to a specificity of almost 1. But as we can
see, only 92 of the 1361 erroneous observations where detected as such. The true-
positive rate, also called sensitivity, is therefore only 0.07, which would be a highly
displeasing result because it means that the model doesn’t work well to detect erro-
neous observations as such and thus completely misses its purpose.

The problem is related to the fact that the two classes of our binary classification
problem have a highly unequal number of observations, like figure 5.15 shows. A
well-known problem in dealing with these imbalanced data is that machine learn-
ing algorithms tend to be biased towards the majority class and ignore the minority
one. This problem also occurs in random forests, because the model performance
is optimized based on overall accuracy. If the observations with an error represent
only about 5% of the data. That means that an OOB error as low as 5% is still unac-
ceptable, because an overall accuracy of 95% means that the model is only as good
as one that would always predict the majority class.

FIGURE 5.15: Distribution of unit types in the training and test data

Methods to handle imbalanced data

To address the problem of imbalanced data, measures can be taken either at the data
level or at the algorithm level. The former are called sampling methods and include
a number of techniques to balance the imbalanced data (Sonak and Patankar, 2015).
One of these sampling methods is under-sampling or downsampling. In downsam-
pling, a fraction r ∈ (0, 1] of the majority class (often times, and also in our case,
the negative class) is selected, to either diminutive the imbalance or fully level it
by selecting a subsample size equal to the size of the minority class. As the train-
ing set will be much smaller than the original imbalanced set, this technique is also
convenient regarding computational resources. On the downside, it implies a loss
of information, which is why the data set should be sufficiently large to consider
downsampling.
Oversampling or Upsampling allows to balance the classes without having to dismiss
any of the available information by replicating units of the minority class type. While
random oversampling randomly samples (with replacement) units of the minority
class to duplicate them, informative oversampling uses the k nearest neighbours of
all the minority samples to create synthetic units. Methods like SMOTE (Synthetic
Minority Over-sampling Technique) can also combine the two previous techniques:
New minority samples are created, while the majority class is sub-sampled to bal-
ance the data without loosing to much information but reducing the risk of over-
fitting due to a highly synthetic data set (Sonak and Patankar, 2015). Using the
explained sampling methods, the following data sets were created:



Chapter 5. Results of Random Forests applied to Selective Editing 36

Model Nb1correct Nb1error
Original data set 141033 3537
Downsampling 3537 3537
SMOTE 1: 14148 10611
SMOTE 2: 7074 7074
SMOTE 3: 10611 10611

TABLE 5.4: Balanced data sets created based on the original data set
by applying several sampling methods

The three variants of the SMOTE differ in the proportion of synthetic observa-
tions created and in the proportion of the subsampled majority class. As shown in
table 5.4, SMOTE 2, for example, is a fully balanced sample, in which the number
of minority observations was doubled by creating synthetic units and then the same
number of observations was drawn from the majority class.

For each of the created data basis, a modelling process using grid searches was
carried out in order to find the optimal tuning parameters for these models. For
each kind, the best resulting fit was selected to continue working with it. In the fol-
lowing, model performances of these models based on the different techniques are
compared. The model based on the original data set, which was already mentioned
before, serves as a reference. A model with upsampling was tested on a subset of
the data, but its computation was too time intensive and the results were not good
enough to pursue this possibility further. In these models, the ROC (receiver operat-
ing characteristic) metric was used instead of accuracy to select the optimal models.
A ROC graphic represents the relative trade-offs between benefits (true positives)
and costs (false positives) (Fawcett, 2006) and therefore takes the balance of these
two measures into account better than a simple accuracy value.

Original
data set

Down-
sampling

SMOTE 1 SMOTE 2 SMOTE 3

mtry 7 12 19 22 17
node size 10 7 5 5 1
Sensitivity 0.078 0.824 0.637 0.767 0.689
Specificity 0.999 0.818 0.933 0.878 0.913
AUC 0.899 0.889 0.896 0.893 0.896
Accuracy 0.946 0.744 0.873 0.807 0.855
Bal. Accuracy 0.533 0.771 0.745 0.760 0.758

TABLE 5.5: Original and balanced data sets used to build the classifi-
cation forest

Table 5.5 shows the selected hyperparameter values and quality measures related
to the models. Although the models differ in terms of sample size and model param-
eters etc., they are comparable in that the best possible variant of each model type is
compared here, which could be achieved by optimising the hyperparameters. First
of all, it is noticeable that all models achieve quite similar values in the ROC metric.
This is also apparent looking at the ROC curves in figures 5.16 and 5.17 shown below.
There the curves between the different models are compared and the area under the
curve is indicated with "AUC". In a perfect curve, where maximum sensitivity and
maximum specificity are possible at the same time, this number would be 1.

We can also observe that the model based on the downsampled data achieves
the best values in terms of sensitivity and balanced accuracy. The balanced accuracy
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is simply an average of the sensitivity and specificity values. Even if the down-
sampling model scores the worst in overall accuracy, for our purposes we need to
prioritise a model that is good at identifying erroneous values as such. For this rea-
son, and not least because of the computational advantages, the model is selected
for further calculations.

FIGURE 5.16: ROC curves comparing model performance for differ-
ent sampling methods applied to the original imbalanced data

FIGURE 5.17: ROC curves comparing model performance for differ-
ent SMOTE data

The variable importance values of the selected classification model are distributed
as shown in figure 5.18. An interesting observation is that, unlike the regression
models in the previous chapter, which were based on all data, it is not a few variables
that are decisive, but that the burden of decision making is less unevenly distributed
across several variables. In the model, the most important variable to determine
whether an observation has an erroneous turnover value, is the relative change in
the turnover value compared to the previous month. The second and third variables
that appear to be important are whether the unit was revised in the first or second
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half of the month and the number of days between the recording of the data and
the data editing. Data that took a long time to be processed may be suspected to
have a problem and this might be an indication of an incorrect value. A comment
from the data collection supervisor also seems to be an important sign. Only after
these variables the raw turnover value, the adjusted value of the previous month,
the sampling weight and the economic classification (rama and cnae) appear in the
list.

FIGURE 5.18: Importance indices of the most important variables
used in the classification model

5.2.2 Step 2: Regression forest for subset without missing value in turnover

After building a classification model as a tool to decide whether an observation has
en erroneous value or not, a second modelling step is required to estimate the mag-
nitude of the error for the observations that are found to be erroneous. As splitting
up the data resulted in very small training data sets for this second step forest, be-
cause there is only a small amount of erroneous values around 200-1500 observa-
tion depending on the month, the increased data basis combining data from various
month was crucial for this step. An analysis building forest based on the data on
singular months, not only showed that this would be an insufficient data basis, but
also revealed that different variables seem more or less relevant depending on the
month, so the enlarged data base for the training phase could also protect us against
overfitting.

The construction of the trees was performed as before in other sections using a
grid search, and in this case with bootstrapping with 10 repetitions as validation
method. The initial idea was to base the regression forest only on erroneous values
as training data, as the quantity to be estimated was the error. For the prediction,
however, the forest was applied to the totality of the non-missing observations, as
error predictions are needed for the calculation of the score function for all observa-
tions, even if the prediction of the error should be close to zero for those observations
which were classified as correct by classification forest. In this context, it has been
shown that the forest has problems with this and predicts quite high values for many
of the zero error observations, as the graphic in figure 5.19 below clearly shows.
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FIGURE 5.19: Scatterplot of real vs predicted error in turnover

This problem may be due to the fact that the regression forest is expected to
make predictions on a type of observation that it does not know from the training
data. In addition these observations make up the vast majority of the test data (re-
member figure 5.15). To counteract this problem, a subsample of the non-erroneous
observations was added to the database. For this modality, three different compo-
sitions were explored, with sample proportions of 50/50, i.e. sb1correct = nb1error,
sb1correct =

nb1error
2 and sb1correct = 2 ∗ nb1error, of which the first version turned out to

be the one that gave the best results.
Although the problem could not be solved completely, the performance of the re-

gression model could still be improved. Figure 5.20 shows the comparison between
the density distributions of the real and predicted error values for both the origi-
nal and selected model (with 50/50 incorrect and correct values). Even if the two
density distributions are not congruent in the selected model, they are much more
similar than in the previous one. The selected model was built with extratrees, node
size of 3 and considering 45 of the 47 predictors at each split. The squared correlation
between the real error values of those predicted by the model R2 is 0.57.

FIGURE 5.20: Distribution of real vs predicted error in turnover

To make the evaluation of such asymmetric data easier, we came up with the
solution of ranking the real error values as well as the predictions and displaying the
relation between those ranks. The according scatter plot can be found in figure 5.21
and shows a pretty clear correlation between both measures, although there are also
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some values further away than desirable from the imaginary line. Overall, it seems
that a solution has been developed on which we can build the next steps. Please
note that the accumulated observations on the right border with the same rank value
result from the fact that the error value is zero for many observations and therefore
they are assigned the same rank. In this sense, there are only distinguishable ranks
for units with an error > 0.

FIGURE 5.21: Scatterplot of real error ranks vs. predicted error ranks
for the regression forest

Analysing the importance values of the variables of the model, which are repre-
sented on terms of indices in figure 5.22, we conclude that in contrary to the classi-
fication tasks, the regression forest is mainly relies on two predominant features,
namely the value of the inventory and the raw turnover value. Next important
variables would be the edited turnover value from the previous month and rela-
tive change from this value to the raw value in the reference month. However, all
the following variables have very low importance compared to the first two.

FIGURE 5.22: Importance indices of the most important variables
used in the regression model
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5.2.3 Regression forest for subset with missing values in the target re-
lated variable turnover

In the last step, before we can calculate the local scores for all units, we have to build
a regression forest that estimates the error for the observations that have a missing
value in the variable turnover. As described above, the target variable in the training
data is defined by the value that an expert has finally assigned to each observation.

Based on a sample with size nNA = 7455 observations and 45 features we build
the forest again using a search grid and in this case 10-fold cross-validation, resulting
in the following model as the best fit:

mtry split rule node size RMSE R2 MAE
45 extratrees 4 2154267 0.905 185230

TABLE 5.6: Best performing model for b1NA observations

We can analyse this model based on the measures previously introduced. If we
compare the density distribution of the real and predicted error values, it seems that
they are quite close to each other, although the predictions, as we have observed
before, do not fully reach an asymmetry as extreme as the one of the real values.

FIGURE 5.23: (a) Density of real vs. predicted errors (b) Scatterplot of
real error ranks vs. predicted error ranks

FIGURE 5.24: Importance indices of the most important variables
used in the regression model for missing turnover observations
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Regarding the variable importances to the variables, the regression forest heavily
depends on one predominant variable, the edited turnover value from the previous
month of each observation. This is not surprising if one keeps in mind that infor-
mation about the raw value, which was very important in the previous regression
forest, is not available here. The next important variables are related to the economic
activity classification variables, but again very far behind the most important vari-
able.

5.3 Evaluation of the results

The first conclusion we can draw, given the large differences in the variables that
are relevant in the various models, is that splitting the data into three parts was a
sound decision to take. The results of the selected models of this two-step approach
can now be combined into unit scores according to the procedure we presented in
chapter 2. We obtain score values based on

sk = dk · p̂k ·Eεk , (5.1)

with dk being the sampling weight (factor), with p̂k being the estimated error prob-
ability resulting from the selected classification model in the case of observations
without missing values and being equal to 1 in the case on observations with miss-
ing values, and with Eεk being the estimated magnitude of the error resulting from
the second step random forest in the case of observations without missing values
and from the single regression forest in the case on observations with missing val-
ues.

Studying the score values with respect to their quality is a difficult task, since
we have no "real" values to check them against. In figure 5.25 below, we are talking
about "real" score values, but these simply correspond to dk · error, since there is no
equivalent to the error probabilities with which the scores were calculated. If one
would rank these scores again, the connection can be shown in the right graphic in
figure 5.25.

FIGURE 5.25: Scatterplots of real vs predicted score (a) values and (b)
ranks in turnover
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Selection Efficiency

In order to create a better basis for deciding whether the calculated score values are
accurate and serve our purposes, a more sophisticated selection efficiency measure
was used, which will be presented in the following. The so-called absolute relative
pseudo-bias was also used, for example, in the paper by Arbues et al. (2013) to
develop an selection efficiency indicator for score functions. The measure is based
on the estimate of the total turnover Ŷ, which will be used for the disseminated
results. Ŷ(ned) will denote the estimator that is obtained when ned items have been
selected and edited. The benchmark is Ŷ(ned) for n = N, which corresponds to
the estimator that results after all the data has been edited manually, like it is the
current practice in the SSAI. This estimator being denoted Ŷ0, the absolute relative
pseudo-bias is given by

B(Ŷ(ned)) =

∣∣∣∣∣ Ŷ(ned)− Ŷ0

Ŷ0

∣∣∣∣∣.
Based on this measure we can now draw the curve of the pseudo-bias evolving

according to the number of selected observations. Naturally the pseudo-bias will
evolve towards 0, and at the latest with the last observation it will be equal to 0. An
averaged random selection of units for editing would correspond to a straight line.
An efficient selection of units leads to a monotonously flattening curve, The quicker
the curve goes down, the more efficient is our score.

In figure 5.26 the computed curve is presented for our final scores. The graph on
the right shows the pseudo-bias based on scores calculated the way it was described
here, the graph on the left give a comparison to how the pseudo-bias would evolve
if the scores were computed without consideration of the sampling weights, relying
only on the estimated error probability and magnitude. As one can see, both curves
show decent results, but it is clear that the sampling weights should definitely be
included in order to obtain a smooth result and select the units as efficiently as pos-
sible. As the theoretical background of selective editing suggests, it is not only the
probability of an error that is relevant, but also the impact the error would have on
the final estimates, which is inevitably linked to the sampling weights.

FIGURE 5.26: Absolute relative pseudo-bias by number of edited
units, (a) without and (b) with consideration of sampling weights

Figure 5.27 shows that if it wasn’t for the observations with missing values in
turnover, the selection score would be even more efficient and again shows the im-
portance of the sampling weights for the construction of the score.
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FIGURE 5.27: Absolute relative pseudo-bias by number of edited
units for subset without missings

Overall the results are very satisfactory. The fast falling curve shows that the
score prioritises the units well. The selection based on the score allows that only
the editing of the first 5000 of the approximately 27000 units is necessary to obtain a
final estimate that differs only about 0.3% from the value that would be obtained if
all turnover values were checked manually.

So far, the efficiency of the score was evaluated for Ŷ at the highest aggregation
level. In order to deepen the evaluation of the results beyond the global level, the de-
velopment of the pseudo-bias is also analysed for subsets, namely the autonomous
communities and the economic activity classification, which are relevant for the cal-
culation of the final indices. For this purpose, the pseudo-bias for subgroups was
analysed in two different ways. The first method would be to re-rank the observa-
tions within a subgroup based on the global score ranks which previously assigned
to the them. Thus, by re-ordered within the autonomous communities, and respec-
tively within the activity classification groups, a ranking of ranks is created. The
second way would be to maintain the global ranks but just draw the graph consid-
ering only observations of each subgroup.

The re-ranking by subgroup method allows for an analysis of how the pseudo-
bias would fall in this autonomous community or branch if all the editing resources
were concentrated to this autonomous community or branch. On the contrary, sub-
group specific curves based on the global rank show the behaviour of the pseudo-
bias in each autonomous communities or branch if the resources are distributed
equally, only in order of global ranking. In some groups this produces pronounced
staircase functions, as the subgroup-related pseudo-bias remain the same until the
editing resources are directed back to this subgroup.

Looking at the pattern of the pseudo-biases shown in details in the figures in
appendix A, it can generally be said that the prioritization of the units can also be
successfully applied at these lower aggregation levels, in different autonomous com-
munities and the economic branches.
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Chapter 6

Conclusions and Future Work

The aim of this thesis was to explore the applicability of random forests for the se-
lective editing of official data, more precisely numerical variables. In this context,
the specific conditions under which National Statistical Offices carry out their work
were discussed and it was found that they are currently faced with the challenge
of meeting requirements in different quality dimensions. It was also identified that
international co-operation, standardisation and innovative methods can be a mean
to reduce the resulting quality dimension conflicts. Therefore, previous applications
of machine learning methods in statistical authorities were analysed and random
forests were recognised as a versatile technique for pattern recognition. The char-
acteristics and functioning of random forests were described, and two concrete ap-
proaches were developed about how they can be applied for selective editing using
short-term business statistic SSAI as an example. An algorithm for the calculation of
a score function could be provided, which efficiently selects influential observations
for further manual editing, according to the estimated probability of an error in the
turnover value and the influence of such an error. It was found that the selection
approach is also applicable to lower aggregation levels.

If influential units are selected efficiently, in a way that only the relevant ones
need to be recontacted, then this is not only a benefit in terms of saving manual
resources, but also implies that these resources can be reallocated elsewhere, possi-
bly to improve the quality of statistical products in other areas. Decisions are also
made more consistent if there is a uniform basis for them and no bias arises from
different data managers. The response burden for companies is also reduced when
fewer manual recontacts are required, promoting the compliance with the EU CoP
P9 principle of non-excessive burden on respondents.

To identify specific points that could be pursued further, we want to mention
some aspects that might increase model performance. The missing data in this work
was manually imputed, however, there are many options of imputing the data,
based on the proximity measures inherent to the random forests built or other al-
gorithms like knn algorithms just to mention two examples. More longitudinal data
could complement the model if it would be combined with time series models that
make use of past months information. Concerning the handling of imbalanced data,
non-sampling methods like cost-sensitive learning could be tested. Also, the ap-
proach has so far been tested only for one item, the turnover value. A future work
could apply it to other target variables such as the value of the inventory or the num-
ber of staff. When different item scores have been developed, a unit score function
can be applied to combine these, like explained in chapter 2. From a methodological
point of view, semi-continuous variables as target variables in random forests are a
field that does not yet seem to be very well studied and might be worth exploring in
greater detail.
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The long-term goal of a work like this one is of course to make the tested meth-
ods applicable to different kinds of similar data and for other statistical institutions,
to offer new perspectives and combine them with related techniques. As metadata
information about the production process increments, so will the variables eligible
for a predictive model. In the presented case, available features about the produc-
tion process were manually revised to preselect promising variables for the model.
Instead of manually reconstructing the underlying data basis every time new infor-
mation is available, future implementations should revise possibilities of connecting
the modelling process to the data infrastructure available to automatically consider
and preselect model features out of all the available information.

Our work concentrates on the selection of suspicious units. Some of the exist-
ing methods and tools for editing and imputation with a focus on machine learning
methods, like CANCEIS from Statistics Canada or HoloClean, which was developed
by the Standford University, combine the detection of error in the editing phase di-
rectly with the following imputation of erroneous values. Like this, recontacts are
completely avoided (Lange, 2020). Based on the findings of our work, we want to
think about ways to integrate the approach we have developed into more broadly
oriented software solutions for the E&I process. An advantage of the application of
random forests in the way it was done here, is that no manually predefined edits
are required for the detection of suspicions values or units. The points mentioned
in the last two paragraphs call for the development of a flexible tool, which can be
standardized in the spirit of the CSPA, in accordance to the EU CoP P1b principle of
coordination and cooperation of the NSIs.

As Hedlin (2003) accurately points out, instead of searching ways to best detect
errors, in general it would be obviously better to pretend errors from happening.
Trying to fix them later has its costs and limitations, and to allocate a huge part of
the institutions resources to editing is not a desirable situation. Some errors, e.g.
so-called inliers are usually not even detectable with micro editing. This leads us to
an example of a graphic from this work that wasn’t mentioned before but illustrates
the problem of undiscovered errors. Figure 6.1 shows the distribution of the relative
change in turnover by unit type from the previous month to the reference month.
It stands out that under those observations that where found to have an erroneous
turnover value, relative difference values around 1 are very common, which then
will be corrected in the editing process. However, in the values that were found
to be correct, a small accumulation around 1 is still noticeable. We therefore must
ask ourselves, how can we know if those are indeed correct values, or if they might
rather be errors that weren’t detected in the manual editing process?

FIGURE 6.1: Density distribution of the relative change in turnover
by unit type
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Whenever we have described values as "real" values before, we naturally have
no chance to know if they actually are. Real values in the context of this work are
only the values assigned after manual editing, which are (hopefully) closer to the
unknown real value. In an approach like this the predictions of the random forests
can only be as good as the manual editing work was. This problem connects to a
wider discussion related to the "ground truth", which raises the question of how to
ensure a basic minimum of quality in training machine learning methods and how
to prevent undiscovered bias from being carried along when manual processes are
replaced by algorithms. Another critical point related to the application of machine
learning methods could be the communication with the users, if methodological
descriptions require an advanced basic knowledge of mathematics or computer sci-
ence, the way in which results have been obtained may appear like a black box to
them. These are issues that need to be addressed in the future, as increasing data vol-
ume and sources make the use of innovative methods essential for the development
of statistical agencies.

In view of the rapidly changing circumstances of NSIs discussed at the begin-
ning, be it through technical innovation, socio-political circumstances or crises, it
should be considered to what extent adaptability and methodological innovation
can be structurally anchored in NSIs. The bureaucratic outlines of state institutions
must be recognised as a challenge, but at the same time they must be seen as an
opportunity, since ultimately bureaucracy, innovation and flexibility are all aimed
at the same purpose: providing high-quality information and making it democrati-
cally accessible. In order to be able to do justice to this purpose, everything speaks
for the idea that quality-based innovation can be driven forward best and fastest in
European and interdisciplinary cooperation.
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Appendix A

Appendix

A.1 Performance measures by Number of Trees

The following figures show the tree curves that where used to analyse the necessary
number of trees for the forests.

FIGURE A.1: R2 by number of trees for the simple regression tree

FIGURE A.2: RMSE by number of mtry for the simple regression tree
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FIGURE A.3: RMSE, MAE and R2 by number of trees for the simple
regression tree with longitudinal variables

FIGURE A.4: RMSE by number of mtry for the simple regression tree
with longitudinal variables
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A.2 Grid Search Results

To search for the optimal tuning parameter values, grid searches were carried out
for all the different types of forests, whose results are represented in the following
figures.

FIGURE A.5: Performance of all combinations for tuning parameters
tested for (a) the classification forest, (b) the regression forest and (c)

the regression forest for b1NA observations
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A.3 ROC Analysis for Classification Forests

The different models that were analysed for each type of decision forest are linked
to different results regarding the variable importance, which can be compared in the
following figures.

FIGURE A.6: ROCs of model built with original data, (a) train (b) test

FIGURE A.7: ROCs of model built with downsampled data, (a) train
(b) test

FIGURE A.8: ROCs of model built with SMOTE 1 data, (a) train (b)
test
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FIGURE A.9: ROCs of model built with SMOTE 2 data, (a) train (b)
test

FIGURE A.10: ROCs of model built with SMOTE 3 data, (a) train (b)
test
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A.4 Variable Importance

FIGURE A.11: Importance indices of the most important variables
used in different analysed classification models (a) original data, (b)

downsampled data, (c) SMOTE 1 data)
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FIGURE A.12: Importance indices of the most important vari-
ables used in different analysed regression models (a) without non-
erroneous values, (b) with 1/1 erroneous and non-erroneous values,

(c) with 2/1 erroneous and non-erroneous values

A.5 Analysis of Selection Efficiency
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FIGURE A.13: Pseudo-bias by number of edited units by autonomous
community
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FIGURE A.14: Pseudo-bias by number of edited units by autonomous
community respecting the global rank distributions
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FIGURE A.15: Pseudo-bias by number of edited units by economic
activity classification
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FIGURE A.16: Pseudo-bias by number of edited units by economic
activity classification respecting the global rank distributions
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