

1

Providing large trade data sets for research using
Apache Parquet and R Shiny

Keywords: International Trade, Large Data, Apache Parquet, Apache Arrow, R

1. INTRODUCTION

As an economics research institute focused on international economics, we are interested

in working with up-to-date international trade data with a fine level of granularity. In the

early days this trade data was downloaded manually and stored either using Excel or as a

comma-separated-values file on a simple file server, i.e. in a shared folder. With the

evolution and increasing proliferation of the statistical programming language R, a

simple automation for downloading and storing bulk files of trade data was set up. The

resulting files were still comma-separated-values and Stata files, as most of our

researchers are using Stata for econometric analysis. But producing static files based on

csv or an XML-derivative (in the case of Stata) comes with the cost of file size, resulting

in larger reading and writing times. This makes it hard to keep the data a-jour, and

potentially reduces the possibility for the storage of e.g. different product classifications

at a time, due to the sheer size of the data. Furthermore, large databases then introduce

the need of saving data in one file per year or one file per exporter country. This makes

queries that have to search (and thus load) across all files very costly and time intensive.

With the use of the R package arrow [1], which provides access to the functionality of

Apache Parquet (a column-oriented data storage format with an efficient data

compression), and enhanced in-memory performance through Apache Arrow, we are a)

able to reduce the size of the data sets and b) improve the speed of queries notably, when

extracting subsets of data from the database. This allows us to keep different data sets up

to date using R-based cronjobs for downloading and ETL into an Apache Parquet

database, using a small Debian-based server running R, RStudio Server and R Shiny

Server. Additionally, we set up an R Shiny GUI for visually extracting data for

downloading in various formats (Excel, csv, R, Stata), and incorporated a simple API

using the R package plumber [2] for simple extraction of data and loading it into R

and/or Stata using HTTP Requests.

1. METHODS

In the following sections we present the hardware in use, the workflow of our scheduled

cronjob (for downloading data, ETL, etc), the basic structure of the Apache Parquet

database set up, using R package arrow [1], as well as the GUI provided for the institute-

wide users of international trade data.

1.1. Server Configuration

We are using Debian 10.6 64bit / Linux 4.19.0-11-amd64 running on a 4-core AMD

A10-7800 Radeon R7 with 32GB RAM and a 200GB SSD, using R v4.0.2, RStudio

Server v1.3.1093, and Shiny Server v1.5.14.948.

1.2. Cronjob structure

The nightly cronjob consists of the following R scripts which are executed subsequently:

2

1. Check for data updates using provided API (UN Comtrade), automated look-up in

folder (EU Comext)

2. Download new and/or updated bulk data provided as archives (zip, 7z)

3. Download new ad-hoc correspondences (EU Comext)

4. ETL to Apache Parquet for provided classifications

5. Generate new classifications using new/own correspondences

6. Compute aggregates and complement data sets with data from other sources

7. Load into Apache Parquet database

1.3. Apache Parquet

Apache Parquet is a column-oriented data storage format provided in the R package

arrow, providing efficient data compression and encoding schemes with enhanced

performance to handle complex and large data in bulk. The arrow package additionally

provides the functionality of Apache Arrow, a cross-language development platform for

handling flat and hierarchical in-memory data, organized for efficient analytic operations

on modern hardware like CPUs and GPUs at large scale (see François et al. [1]). With the

implementation of both concepts, we expect 1) a substantial reduction in file size, 2) a

performance boost in loading data, and 3) a reduction in time when handling large in-

memory data.

The Apache Parquet database consists of many small files, depending on the type of

partition that is chosen when setting it up. In our case, a database on international trade in

goods, we chose partitioning by (1) Product classification, (2) Year, (3) Trade Flow, and

(4) Reporter, as this is from our experience the most common and efficient way of

querying the database.

1.4. Graphical User Interface & API

After the cronjob of the R scripts presented above is finished, the updated database is

available via an R Shiny [3] GUI using your favourite web browser, and via HTTP

requests provided by the plumber API. Figure 1 below shows the home page of the GUI,

offering the possibility to choose between databases and pre-compiled datasets, e.g. as

visible in Figure 1 a pre-compiled NACE Rev1 2-digit data set based on the Eurostat

COMEXT database, using a correspondence of the WIOD project [4].

Figure 1. GUI - Start Screen

The GUI allows for country- and product-specific filtering. The available options are

dynamically generated as the displayed tables differ in their possible choices of countries

and products. Additionally, we offer a user-based construction of country- and product-

3

aggregates. This is implemented using the fast-aggregation features of the data.table [5]

package. With the use of R package eurostat [6], up-to-date currency exchange rates are

fetched from the Eurostat database, allowing the conversion between EUR and USD

using period average/end of period rates. Figure 2 shows the possibility to filter trade

flows (Export, Import), as well as the time period of interest for the resulting dataset.

Figure 2. GUI - Filtering Time, Flow & Unit

As researchers in our institute are using different software to analyse the resulting

datasets, different options for the export are provided using packages haven (Stata),

openxlsx (Excel), data.table (fast csv output) and R base functionality.

2. RESULTS

Compression-wise we were able to reduce the size of the data sets for all product

classifications the UN Comtrade trade database massively from ~900GB to 55GB

(compression ratio of ~16 or saving in space of 93.89%). This is even significantly

higher as reported in a paper by Boufea et al. (2017) [7] who indicated compression

ratios of around 10 compared to tab-separated-values files.

We now compare the performance of the pre-existing database consisting of comma-

separated-values files with the performance of the columnar-based Apache Parquet

format, based on queries usually used at our institute. For the purpose of demonstration,

we are using data based on the UN Comtrade database in its HS96 classification. The

following queries are practical use cases and try to show different variations of

performance based on the different need of loading large amounts of data into the

memory before sub-setting the data. Loading and sub-setting is done with R package

data.table when using csv files. Table 1 shows the resulting performance measured in

seconds and minutes, as well as the resulting improvement in percent respectively.

Table 1. Query performance

Query Parquet CSV Improvement

Reporter = AUT, Partner = DEU, Year = 2017,
product = TOTAL, flow = Export

3.3” 9.7” 66%

Reporter = AUT, Partner = DEU, Year = 2008-2018,
product = TOTAL, flow = Export

25.4” 1.7’ 75%

Reporter = EU28, Partner = USA, Year = 2017,
product = TOTAL, flow = Export

4.0” 9.7” 35%

Reporter = EU28, Partner = (USA, JPN, KOR, RUS, BRA),
Year = 2017, product = TOTAL, flow = Export & Import

7.3” 21.5” 66%

Reporter = EU28, Partner = (USA, JPN, KOR, RUS, BRA),
Year = 2008-2018, product = TOTAL, flow = Export & Import

53.5” 3.5’ 75%

4

3. CONCLUSIONS

This paper demonstrates that the Apache Arrow framework outperforms the csv-based

database in all tested queries. The mean improvement in elapsed time is 63%. Another

advantage of the Apache Arrow architecture is that it hides the distributed file system and

enables the user to write easier understandable code. The csv-based database makes it

necessary to write loop constructs that are less performant and more elaborate to

program. Furthermore, the Apache Parquet data storage format reduces file sizes

dramatically, allowing for cheaper storage of large and even big data sets on modern

computer hardware. In the presented use case, file size was drastically reduced by over

93%, resulting in an impressive compression factor of 16 compared to a database based

on comma-separated-values files.

3.1. Outlook

We see the parquet data as a basis, since it is kept up to date. From this basis we can then

easily expand our database in several ways, e.g. 1) extend the database by including

detailed tariff data, as well as data on the occurrence of non-tariff measures (NTMs). The

inclusion of this data would require incorporating non-reported zero trade flows. First

tests show that this would increase storage by a factor of ~4, and 2) include computation

of often-used aggregations, such as bilateral totals or similar.

5

4. REFERENCES

[1] Romain François, Jeroen Ooms, Neal Richardson and Apache Arrow (2020).

arrow: Integration to 'Apache' 'Arrow'. R package version 1.0.1.

https://CRAN.R-project.org/package=arrow

[2] Barret Schloerke and Jeff Allen (2020). plumber: An API Generator for R. R

package version 1.0.0. https://CRAN.R-project.org/package=plumber

[3] Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson

(2020). shiny: Web Application Framework for R. R package version 1.5.0.

https://CRAN.R-project.org/package=shiny

[4] Timmer, M., Erumban, A.A., Gouma, R., Los, B., Temurshoev, U., de Vries,

G.J., Arto, I.A., Genty, V.A.A., Neuwahl, F., Francois, J. and Pindyuk, O., 2012.

The world input-output database (WIOD): contents, sources and methods (No.

20120401). Institute for International and Development Economics.

[5] Matt Dowle and Arun Srinivasan (2020). data.table: Extension of `data.frame`. R

package version 1.13.0. https://CRAN.R-project.org/package=data.table

[6] Leo Lahti, Janne Huovari, Markus Kainu, Przemyslaw Biecek. Retrieval and

analysis of Eurostat open data with the eurostat package. R Journal 9(1):385-392,

2017. Version 3.6.1 Package URL: http://ropengov.github.io/eurostat Manuscript

URL: https://journal.r-project.org/archive/2017/RJ-2017-019/index.html

[7] Boufea, A., Finkers, R., van Kaauwen, M., Kramer, M. and Athanasiadis, I.N.,

2017, December. Managing variant calling files the big data way: Using HDFS

and apache parquet. In Proceedings of the Fourth IEEE/ACM International

Conference on Big Data Computing, Applications and Technologies (pp. 219-

226).

https://cran.r-project.org/package=arrow
https://cran.r-project.org/package=plumber
https://cran.r-project.org/package=shiny
https://cran.r-project.org/package=data.table
https://journal.r-project.org/archive/2017/RJ-2017-019/index.html

