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1 Introduction

At an increasingly large scale and with increasing details, mobile phone data are
shedding a new light on population dynamics. Yet, spatial resolution of cellular-
based statistics is scarcely documented, highly dependent on the network topology
and very heterogeneous across territories. In this paper, we propose a general frame-
work to evaluate the location estimation precision of cellular network events. This
evaluation combined with a quadtree algorithm enable us to build an adaptive spatial
grid featuring small tiles for high accuracy areas and large tiles for low accuracy ar-
eas. The spatial precision is embedded within the dissemination grid. Our proposals
are directly tested on producing a new present population statistics for metropoli-
tan France, building from three main input datasets: raw signalling data, network
coverage data and a highly precise geography of French residents.

2 Methods

Spatial mapping. The geolocation of mobile devices - from events recorded at
the network cell level - can be described as solving an inverse problem [1]. Given a
tesselation of interest, with I tiles, let us denote u ∈ {0, 1}I the vector encoding the
true tile of presence of the device at the origin of the event. When the device is in tile
i0, u = 1i0 the vector such that ui0 = 1 while ui = 0 ∀ i 6= i0. Given a cellular grid
with J cells, we define the random variable c ∈ {0, 1}J , encoding the cell recording the
event of this device: when the recording cell is j0, c = 1j0 . Telecom network coverage
data gives us a probability matrix P , such that Pji represents the probability of being
detected at cell j while being in tile i:

Pj,i = P{device detected in cell j|device in tile i}

Realistic models are used by mobile network operators to instanciate the matrix P
in particular to be able to fulfill legal obligation.1 On average, we expect to observe
on network cells E[c] = Pu translating the presence of the device.2 The estimate û
can be written in general as û = g(P, c) where g is a chosen spatial mapping. In this
paper we focus on a linear estimator û = Qc. Q distributes presence over the cells in
the tiles:3

Qi,j = P{device mapped to tile i|device detected in antenna j}

1Such as providing emergency call location.
2Note that u could also encode the presence of many devices, possibly with individual weights.
3Although our estimation of spatial accuracy may be applied to any spatial mapping, for our

empirical results we follow [2] who suggest to deduce Q from P Bayes’ rule by introducing a prior
that reflects where the population is most likely located (e.g. based on land-use). In the results
presented here, we use a uniform prior.
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Estimating accuracy locally. The accuracy of this linear estimator can be ap-
proached locally by defining the probability to localise in i a device who is in i0 and
connects to the network probabilistically through P .

Ni,i0 = P{device mapped to tile i|device in tile i0}

Formally, N = QP . A good estimator Q should lead to a high Ni0,i0 probability
(correct mapping), or at least a high probability of tiles i in the neighborhood of i0.
With previous notations, N1i0 = E[û|device in tile i0]. Given x the tile coordinate,
such that xi is the coordinate of tile i, and x̂ denotes the inferred location coordinates
from û, the average inferred location of the device located in i0 is obtained from
x̂i0 = E[x̂|device in tile i0] =

∑
i Ni,i0xi. The spatial error integrates the uncertainty

from P and Q, and can be evaluated with the mean squared error of the inferred
location:

MSEi0 = E[‖x̂− xi0‖2| device in tile i0] = E[‖x̂io − xi0‖2|i0]︸ ︷︷ ︸
Bias

+E[‖x̂io − x̂‖2|i0]︸ ︷︷ ︸
Variance

The bias term describes the distance between the average inferred location and true
location i0 while the variance term measures the uncertainty around the average in-
ferred location. This method allows the representation of the spatial accuracy of the
estimates (Figure 1) - and notably shows how accuracy greatly varies in space.

(a) Bias term (b) Variance term

Figure 1: Square root of the Biais and Variance terms (Unit: meter). Note: For this
computation, matrix P was obtained from Orange Fluxvision and the prior was considered uniform.

Embedding precision within dissemination. We build a quadtree which di-
rectly embeds the calculated spatial precision by gathering tiles until the probability
of correct location in the macro tile I0 (group of tiles) is higher than a threshold:
NI0(I0) > s. We derive present population estimates within this reduced spatial grid,
which visually provide a clear idea of the achievable precision (Figure 2.).

Present Population Statistics. We build hourly present population statistics over
metropolitan France using 3 months of signaling data from Orange network and the
geography of French residents from INSEE.4 As our goal is to count individuals -
and not active mobile phones, we added two steps: device temporal interpolation and

4Our approach only requires exchanges of anonymous aggregates between INSEE and ORANGE.
Processing of individual data was performed by each data owner.
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(a) Around Marseilles (b) Focus on the Old Port of Marseilles

Figure 2: Reduced grid with a threshold s = 1%. The larger the cells, the less accurate
the precision. Note: The grid was based on Orange Fluxvision matrix P and uniform prior.

device residency-based weighting. To bypass the temporal sporadic presence of users
over the network, we use device trajectory interpolation to rely on the closest-in-time
location for each hour, before any aggregation. To be representative of the French
resident population, we build device residency-based weights in several steps.5 For
each device, we estimate a home cell (a cell covering the device owner home). We then
map French residents over home cells using realistic information on the coverage of
each tile of 100 meters by Orange cells as provided by Orange Fluxvision (matrix P ).
We define weights with the ratio of actual residents divided by the network-detected
residents at the level of contiguous groups of home cells which contain at least twenty
detected resident devices.6 Importantly with this approach, each detected device is
assumed to be representative in its presence patterns of its neighbourhood. Finally, we
build weighted sums of devices at the cell × hour level. These final aggregates may
be mapped according to any spatial mapping. Given a spatial mapping Q, device
residency-based weights w, and one record c per device i, we can reconstruct the
present population vector as

∑
iwiQci. In the following empirical application, we use

a bayesian inversion of matrix P with uniform prior to build Q.

3 Results

This new statistics allows the study of within day and across days variations of popu-
lation. Around the Paris urban area (Figure 3.a.), we can see commuting movements
in and out of the business centers. The suburbs are emptying while the center is
filling up. In the course of a month (Figure 3.b.), tourism mobilities are predominant.
On weekdays, the population is concentrated in cities. On Friday evenings, large seg-
ments of the population leave cities and move to the countryside and coastal areas,
the return movements take place on sunday evenings. Through these two examples,
we illustrate the useful visual properties of the adaptive grid. It allows us to describe
the urban and rural areas at the same time while communicating the relative precision
of the estimates in space.

5We filter devices which are identified as mobile phones (to filter M2M) and retain devices which
are present at least 30 days out of the three months so as to ensure a relative stability of our scope
(e.g. to filter movement due to client churning - irrelevant to inform on total counts).

6Therefore, at each hour, the weighted sum of network-detected residents equals the actual resi-
dents number at a very local level, and not only at the national level.
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(a) hour-by-hour the 2019-03-08 (b) Day-by-Day from March to June 2019

Figure 3: Variation of Present Population at the hourly and daily level. Note: The
same grid is use on the maps. On the Day-by-day, we keep only the present population at 22 o’clock.

4 Conclusion

We suggest a method to evaluate locally the probability that an event happening in
a given region of space can be effectively mapped to this region. This method can be
used for any spatial mappings and any assumption on the modelling of device-network
interactions (e.g. voronoi-like tessellation, simplified radio propagation model...). We
suggest to embed this information into the dissemination of the results - through
a quadtree-derived adaptive grid. Our results are substanciated with an empirical
application on French data. We build a new present population statistics over the
French territory drawing particular attention to its consistency with official statistics
and to the spatial mapping of the results.
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