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20th century lore:

• must protect individuals
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Female 20 18 2

* Place of birth (POB)
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SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 17 5

Female 20 18 2

20th century lore:

• must protect individuals

• therefore treat small counts…

• … and ensure consistency…

• … and ensure consistency…

• … and ensure consistency…

 looks easy, but is generally neither simple nor efficient

Intro: 21st century statistical confidentiality

SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 17 5

Female 20 18 2

* Place of birth (POB)

SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 C C

Female 20 C C



21th century state of the art:

• database reconstruction theorem (Dinur and Nissim, 2003)

Too many statistics, published too accurately, allow full & accurate 

reconstruction of all the input microdata…

(example e.g. in U.S. Census Bureau, 2018a, 2018b)
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Noise in action:

Noisy concepts: bottom-up
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Female 20 C C



Noise in action: Is this better?

Noisy concepts: bottom-up

SEX \\ POB Total Country Outside

Total 42 37 7

Male 23 15 4

Female 21 16 3



… a closer look at single statistic level – e.g. total population in the area:
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… a closer look at single statistic level – e.g. total population in the area:

Noisy concepts: bottom-up
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… a closer look at single statistic level – e.g. total population in the area:

Noisy concepts: bottom-up or utility-driven
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discrete

…

noise variance V

free parameter!



Noisy concepts: top-down

Differential privacy (DP) picture:

• introducing global privacy budget ε (Dwork et al., 2006)

ε ≈ 1

0.01100



Noisy concepts: top-down or risk-driven

Differential privacy (DP) picture:

• introducing global privacy budget ε (Dwork et al., 2006)

• promise: strong global privacy guarantee … but local noise size?

42

V

???



Noisy concepts: top-down or risk-driven

Differential privacy (DP) picture:

• introducing global privacy budget ε (Dwork et al., 2006)

• promise: strong global privacy guarantee … but local noise size?

42

V
parameter

risk-driven: V(ε)

utility-driven: ε(V)
parameter



• How many independent observations t of “total population” are in this table?

 t = 1

 t = 2

 t = 3

 t = 4

Risks: massive averaging

SEX \\ POB Total Country Outside

Total 42 37 7

Male 23 15 4

Female 21 16 3

each count with noise variance V = 1
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• How many independent observations t of “total population” are in this table?

 t = 1

 t = 2

 t = 3

 t = 4

• average variance:

Risks: massive averaging

SEX \\ POB Total Country Outside

Total 42 37 7

Male 23 15 4

Female 21 16 3

+

+ + +
+

+

ത𝑉 =
𝑘

𝑡2
𝑉 =

9

42
1 = 0. ത5

each count with noise variance V = 1

fixed by output tables noise parameter



• Noise distributions – part 2: how long is the tail?

Risks: exploiting table constraints
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• Noise distributions – part 2: how long is the tail?

Risks: exploiting table constraints
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noise magnitude bound parameter E = 3

e.g. strict ε-DP
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e.g. relaxed (ε,δ)-DP or cell key method (Marley and Leaver, 2011)

… but strict ε-DP



• Now would you bet all your money on a guess for the true count of the …

 … total population?

 … country-born males?

 … total females?

 … total foreign-born?

Risks: exploiting table constraints
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Male 23 15 4

Female 21 16 3

each count with noise variance V = 1

and noise bound E = 2



• Now would you bet all your money on a guess for the true count of the …

 … total population?

 … country-born males (= 17)
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 … total foreign-born?
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• Now would you bet all your money on a guess for the true count of the …

 … total population?

 … country-born males (= 17)

 … total females?

 … total foreign-born?

• How often does this happen?

Risks: exploiting table constraints

SEX \\ POB Total Country Outside

Total 42 37 = 35+2 7

Male 23 15 = 17-2 4

Female 21 16 = 18-2 3

# of constraint n-tuples in output x   Pr(noise = ±E)n

fixed by output tables fixed by noise parameters V and E

each count with noise variance V = 1

and noise bound E = 2



• 2021 EU census: ca. 110 000 

Local Administrative Units

(~ municipalities), of which

43 395 with <500 people

8 502 with <100 people

866 with <20 people

• Could we accept here e.g.

Pr(|noise|>100) = 0.1% or more?

 Yes

Utility: (noise) tail wagging the (statistic) dog

 No
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• mainly a problem of strict ε-DP approaches

Recall: Noise magnitude bound parameter E, “cutting off” the tail, is forbidden in strict ε-DP

• E.g. 2020 test setup of U.S. Census Bureau (2019) with moderate global ε = 1

Utility: (noise) tail wagging the (statistic) dog

Cidamón, La Rioja, Spain
ES230_26048

source: Wikipedia

source: Google Maps

2011 census strict ε-DP 

Total 30 -17

Male 20 -1

Female 15 -9

https://en.wikipedia.org/wiki/Cidam%C3%B3n
https://www.google.be/maps/place/26291+Cidam%C3%B3n,+La+Rioja,+Spanien/@42.5259795,-3.2682037,9.5z/data=!4m5!3m4!1s0xd456240059df141:0x97da5dd02938c29f!8m2!3d42.4950042!4d-2.8785993


• risk + utility constraints on strict ε-DP setup for whole 2021 EU census output

Outro: the 2021 EU census picture

uselessvulnerable

ε?



• risk + utility constraints on strict ε-DP setup for whole 2021 EU census output

Outro: the 2021 EU census picture
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• whole 2021 EU census output

• risk constraints on bottom-up 

parameter space V – E

• utility controlled directly by

V and E (utility-driven)

• e.g. cell key method

recommended for 2021 EU 

census (ESSnet, 2017, 2019)

Outro: the 2021 EU census picture
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Thank you
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