

Differential privacy and noisy confidentiality concepts for European population statistics

NTTS 2021 Session 'Input and output privacy in official statistics', 11 March 2021

Fabian BACH European Commission – Eurostat Unit F2 – Population and migration

Outline

- 1. Intro: 21st century statistical confidentiality
- 2. Noisy concepts: bottom-up and top-down
- 3. Risks: averaging and exploiting constraints
- 4. Utility: (noise) tail wagging the (statistic) dog
- 5. Outro: the 2021 EU census picture

20th century lore:

• must protect individuals

SEX \\ POB*	Total	Country	Outside
Total	42	35	7
Male	22	17	5
Female	20	18	2

* Place of birth (POB)

20th century lore:

- must protect individuals
- therefore treat small counts

SEX \\ POB*	Total	Country	Outside
Total	42	35	7
Male	22	17	5
Female	20	18	С

* Place of birth (POB)

20th century lore:

- must protect individuals
- therefore treat small counts...
- ... and ensure consistency...
- ... and ensure consistency...
- ... and ensure consistency...

SEX \\ POB*	Total	Country	Outside	
Total	42	35	7	$+ \Box$
Male	22	С	С	
Female	20	С	С	٣

* Place of birth (POB)

→ looks easy, but is generally neither simple nor efficient

21th century state of the art:

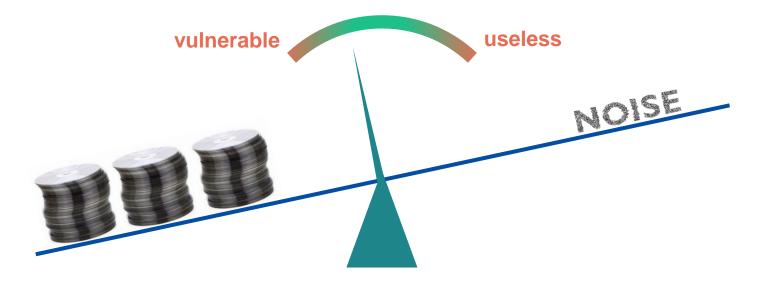
• database reconstruction theorem (Dinur and Nissim, 2003)

Too many statistics, published too accurately, allow full & accurate reconstruction of all the input microdata...

(example e.g. in U.S. Census Bureau, 2018a, 2018b)

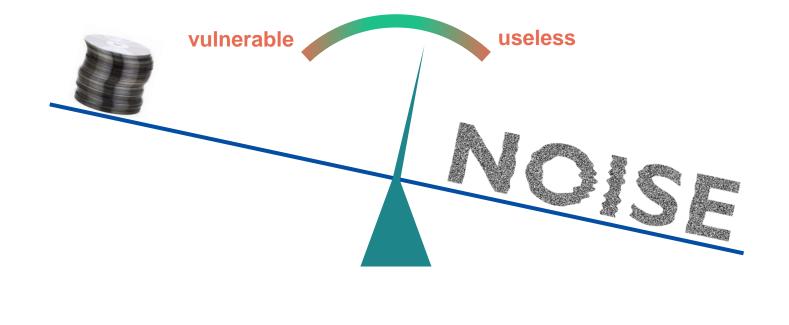
21th century state of the art:

• database reconstruction theorem (Dinur and Nissim, 2003)



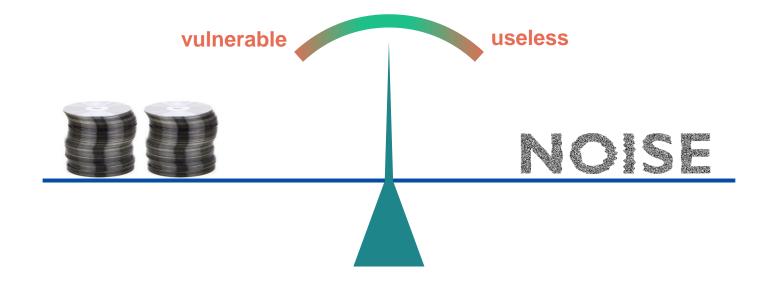
21th century state of the art:

• database reconstruction theorem (Dinur and Nissim, 2003)



21th century state of the art:

• database reconstruction theorem (Dinur and Nissim, 2003)



Noise in action:

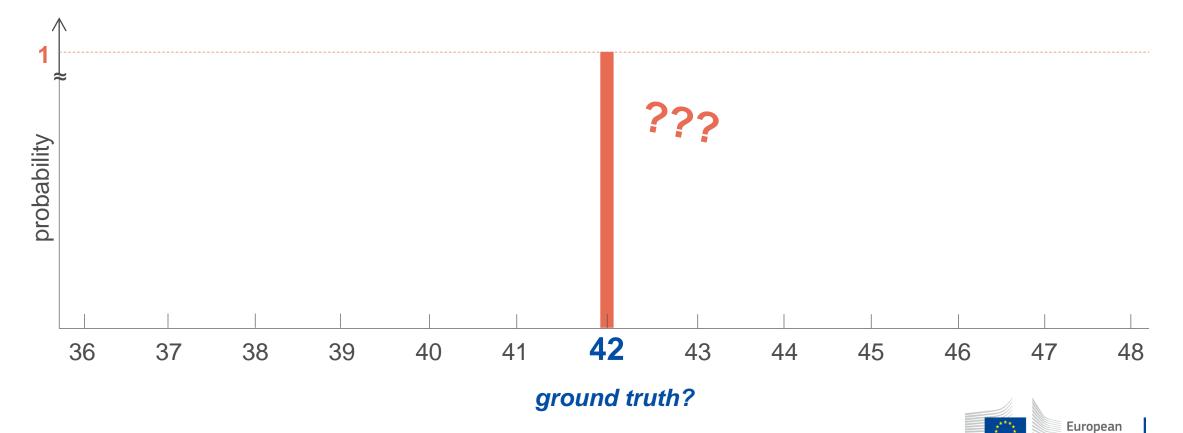
SEX \\ POB	Total	Country	Outside
Total	42	35	7
Male	22	С	С
Female	20	С	С

Noise in action: Is this better?

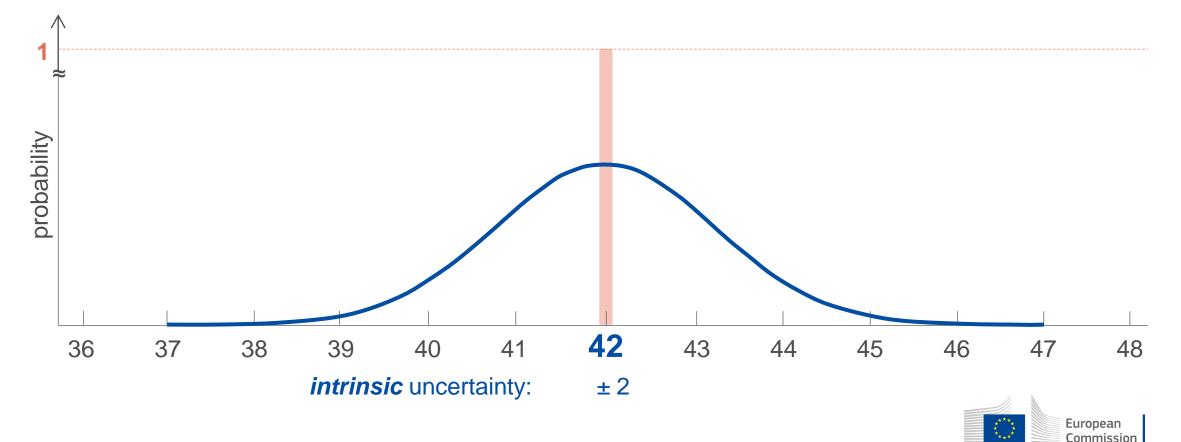
SEX \\ POB	Total	Country	Outside
Total	42	37	7
Male	23	15	4
Female	21	16	3

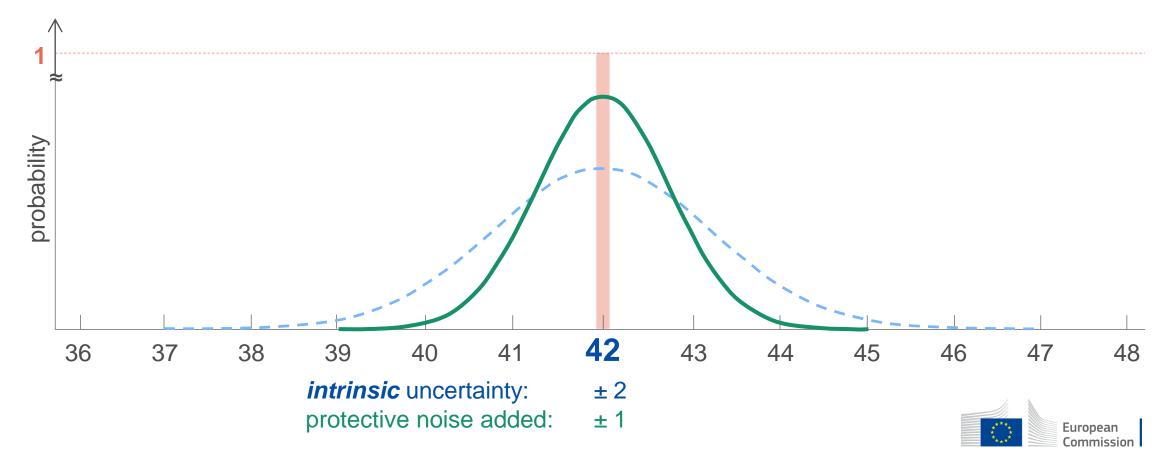
SEX \\ POB	Total	Country	Outside
Total	42	37	7
Male	23	15	4
Female	21	16	3

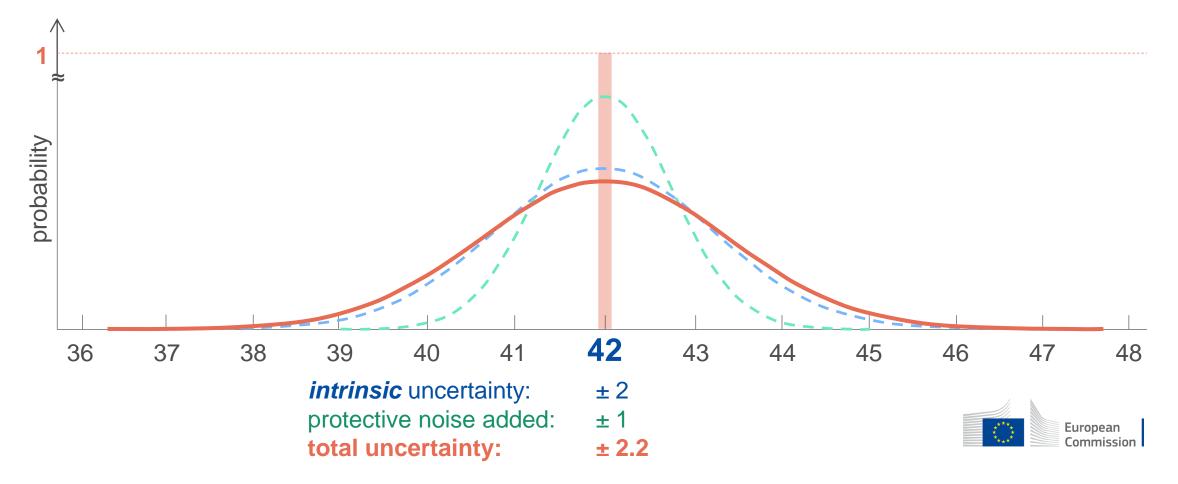
... a closer look at **single statistic** level – e.g. total population in the area:

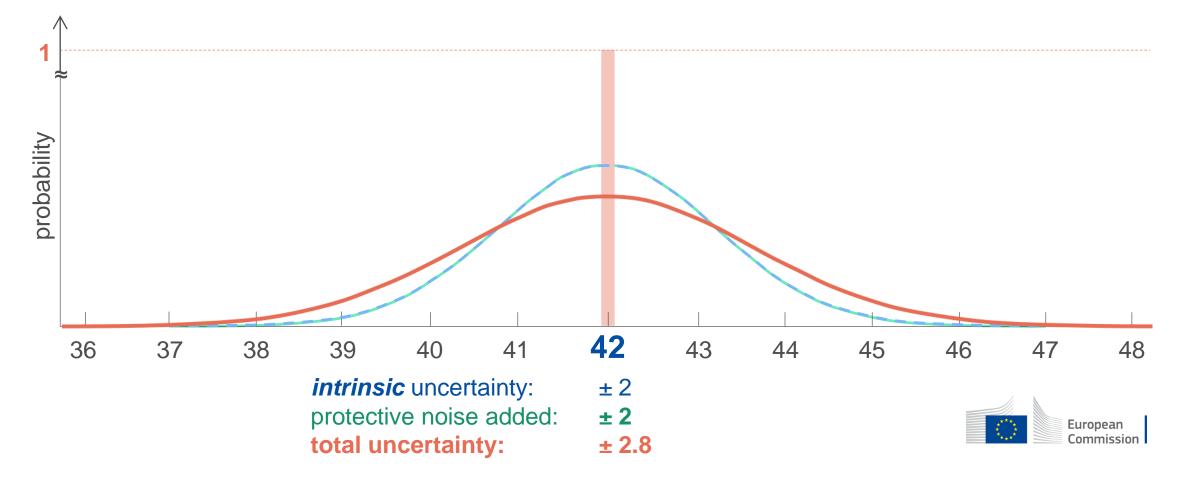


Commission

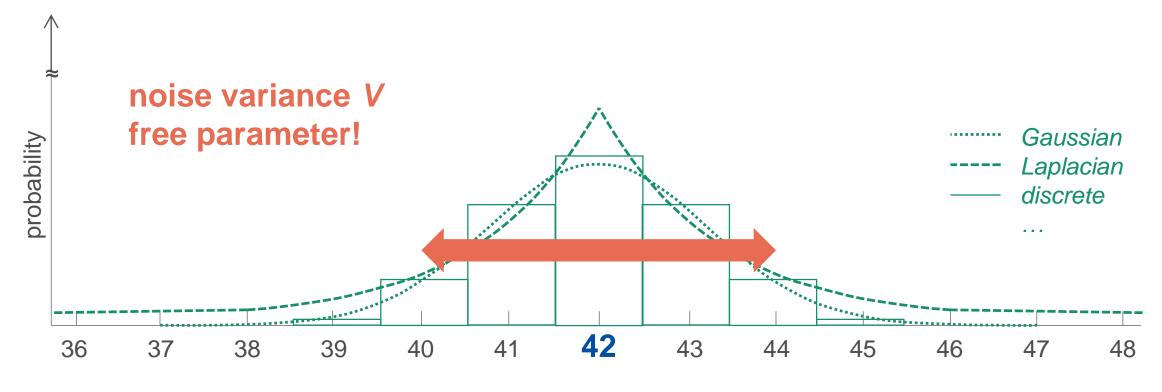








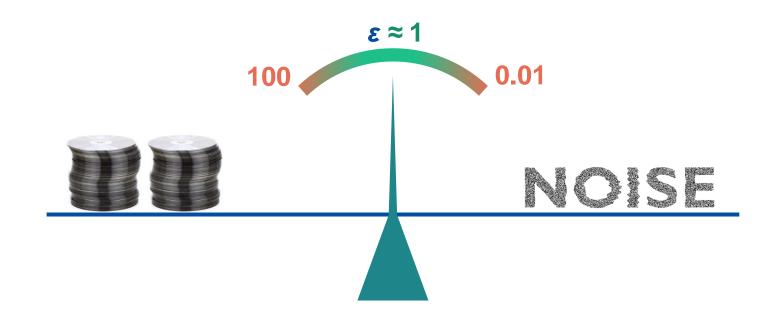
Noisy concepts: bottom-up or utility-driven



Noisy concepts: top-down

Differential privacy (DP) picture:

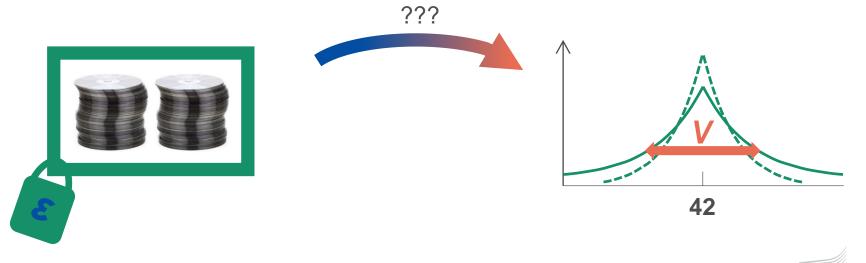
• introducing global privacy budget ε (Dwork et al., 2006)



Noisy concepts: top-down or risk-driven

Differential privacy (DP) picture:

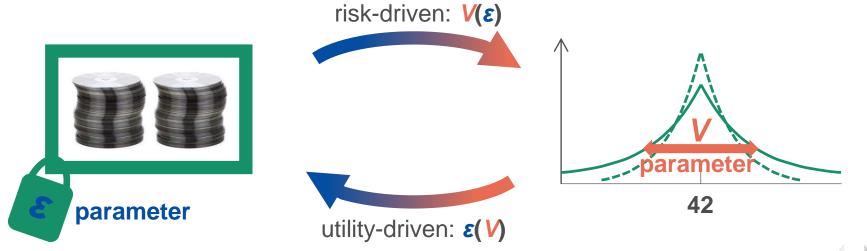
- introducing global privacy budget ε (Dwork et al., 2006)
- promise: strong global privacy guarantee ... but local noise size?



Noisy concepts: top-down or risk-driven

Differential privacy (DP) picture:

- introducing global privacy budget ε (Dwork et al., 2006)
- promise: strong global privacy guarantee ... but local noise size?



Risks: massive averaging

• How many independent observations *t* of "total population" are in this table?

t = 1 t = 2 t = 3 t = 4

SEX \\ POB	Total	Country	Outside
Total	42	37	7
Male	23	15	4
Female	21	16	3

each count with noise variance V = 1

Risks: massive averaging

• How many independent observations *t* of "total population" are in this table?

 $\Box t = 1$ $\Box t = 2$ $\Box t = 3$ $\checkmark t = 4$

SEX \\ POB	Total	Country	Outside
Total	42	37 -	- 7
Male	23	15	4
Female	21	16 -	- 3

each count with noise variance V = 1

Risks: massive averaging

• How many independent observations *t* of "total population" are in this table?

9

<mark>4</mark>2

noise parameter

0.5

 $\frac{k}{t^2}$

 \overline{V}

fixed by output tables

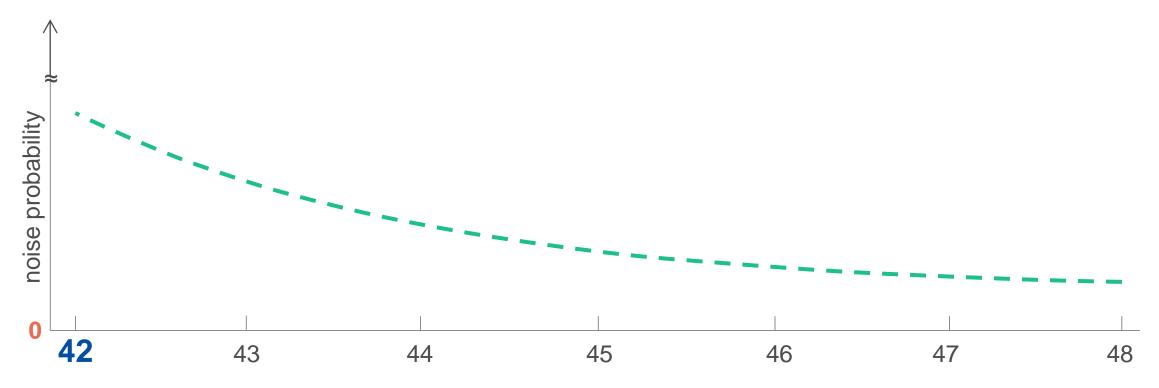
t = 1 t = 2 t = 3 t = 4

SEX \\ POB	Total	Country	Outside
Total	42	37 -	- 7
Male	23	15	4
Female	21	16 -	- 3
each count with noise variance $V = 1$			

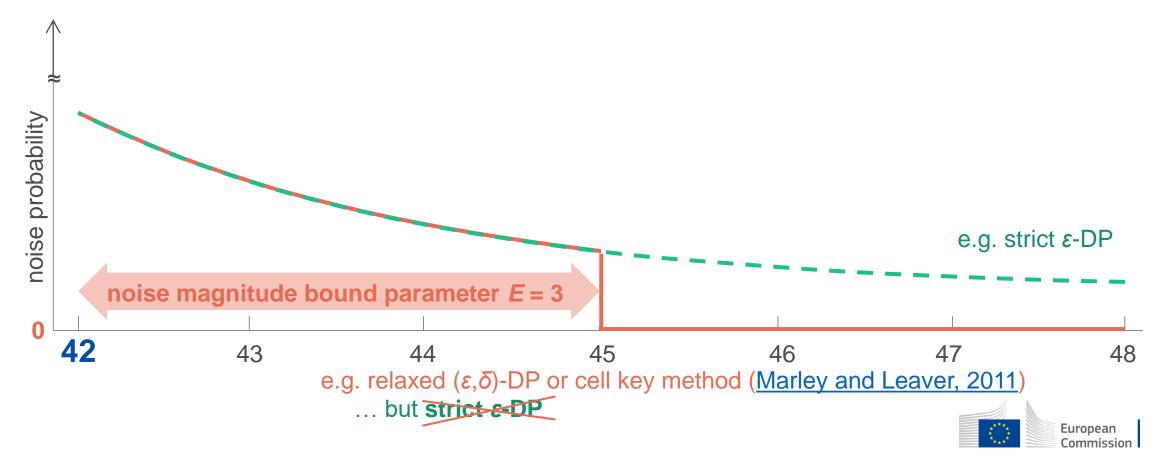
• average variance:

European Commission

• Noise distributions – part 2: how long is the tail?



• Noise distributions – part 2: how long is the tail?



- Now would you bet all your money on a guess for the true count of the ...
 - □ ... total population?
 - □ ... country-born males?
 - □ ... total females?
 - □ ... total foreign-born?

SEX \\ POB	Total	Country	Outside
Total	42	37	7
Male	23	15	4
Female	21	16	3

each count with noise variance V = 1and noise bound E = 2

- Now would you bet all your money on a guess for the true count of the ...
 - ... total population?
 - \checkmark ... country-born males (= 17)
 - □ ... total females?
 - □ ... total foreign-born?

SEX \\ POB	Total	Country	Outside
Total	42	37 = <mark>35</mark> +2	7
Male	23	15 = 17-2	4
Female	21	16 = 18 -2	3

each count with noise variance V = 1and noise bound E = 2

- Now would you bet all your money on a guess for the true count of the ...
 - □ ... total population?
 - ... country-born males (= 17)
 - □ ... total females?
 - □ ... total foreign-born?

SEX \\ POB	Total	Country	Outside
Total	42	37 = <mark>35</mark> +2	7
Male	23	15 = 17- 2	4
Female	21	16 = <mark>18</mark> -2	3

- each count with noise variance V = 1 and noise bound E = 2
- How often does this happen?

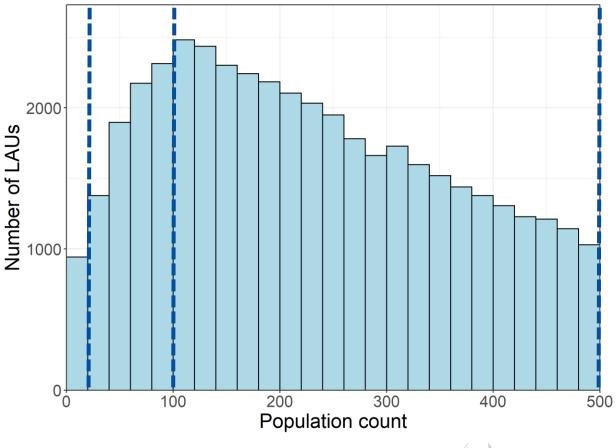
of constraint *n*-tuples in output x $Pr(noise = \pm E)^n$

fixed by output tables

fixed by noise parameters V and E

Utility: (noise) tail wagging the (statistic) dog

- 2021 EU census: ca. 110 000
 Local Administrative Units (~ municipalities), of which
 - ➤ 43 395 with <500 people</p>
 - **≻**8 502 with <100 people
 - ▶866 with <20 people</p>
- Could we accept here e.g.
 Pr(|noise|>100) = 0.1% or more?

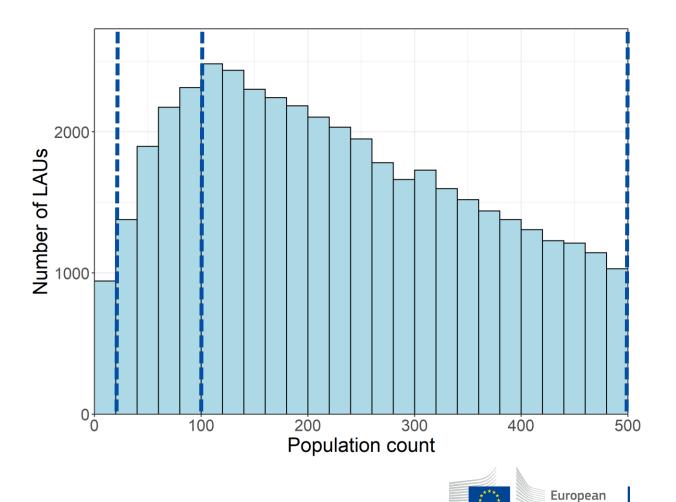


Utility: (noise) tail wagging the (statistic) dog

- 2021 EU census: ca. 110 000
 Local Administrative Units (~ municipalities), of which
 - ➤ 43 395 with <500 people</p>
 - **≻**8 502 with <100 people
 - ≽866 with <20 people</p>

Yes

Could we accept here e.g.
 Pr(|noise|>100) = 0.1% or more?



Commission

Utility: (noise) tail wagging the (statistic) dog

mainly a problem of strict ε-DP approaches

Recall: Noise magnitude bound parameter E, "cutting off" the tail, is **forbidden** in strict ε -DP

• E.g. 2020 test setup of <u>U.S. Census Bureau (2019)</u> with moderate global $\varepsilon = 1$

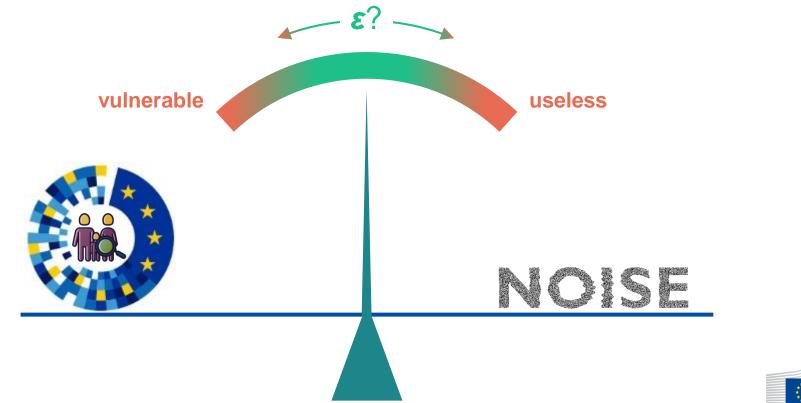
	2011 census	strict ε-DP
Total	30	-17
Male	20	-1
Female	15	-9

Cidamón, La Rioja, Spain ES230 26048

source: Google Maps

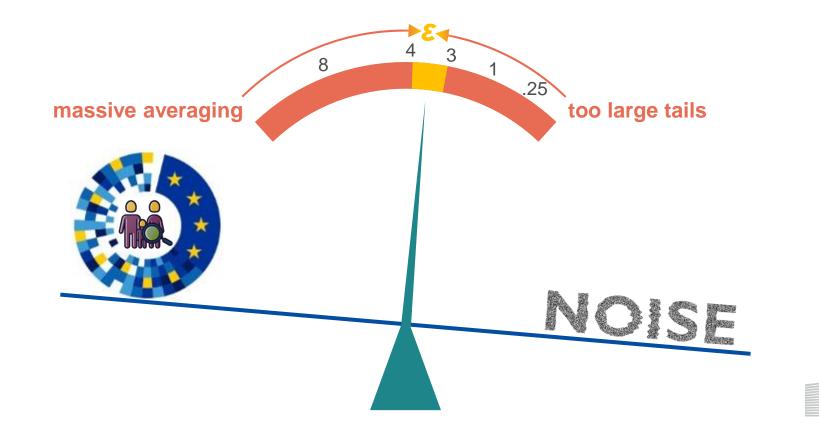
Outro: the 2021 EU census picture

• risk + utility constraints on strict ε -DP setup for whole 2021 EU census output



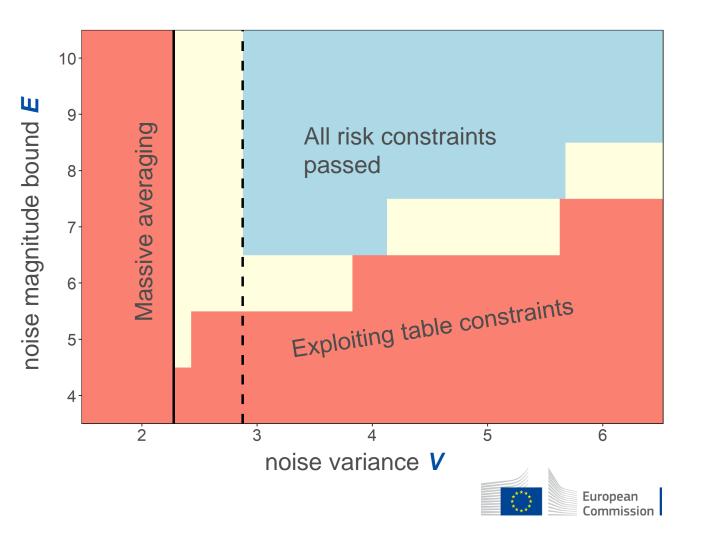
Outro: the 2021 EU census picture

• risk + utility constraints on strict ε -DP setup for whole 2021 EU census output



Outro: the 2021 EU census picture

- whole 2021 EU census output
- risk constraints on bottom-up parameter space V – E
- utility controlled directly by
 V and E (utility-driven)
- e.g. cell key method recommended for 2021 EU census (<u>ESSnet, 2017, 2019</u>)



Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Key references (1)

Ashgar and Kaafar (2019)	H. J. Ashgar, D. Kaafar, Averaging Attacks on Bounded Noise-based Disclosure Control Algorithms (Proceedings on Privacy Enhancing Technologies; 2020 (2))
Dinur and Nissim (2003)	I. Dinur, K. Nissim, <i>Revealing Information while Preserving Privacy</i> (PODS '03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems)
Dwork et al. (2006)	C. Dwork, F. McSherry, K. Nissim, A. Smith, <i>Calibrating Noise to Sensitivity in Private Data Analysis</i> (Journal of Privacy and Confidentiality 7 (3):17-51; 2017)
ESSnet (2017)	Antal, L. et al., <i>Harmonised protection of Census data</i> (<u>Centre of Excellence on Statistical Disclosure</u> Control, Eurostat CROS portal, 2017)
ESSnet (2019)	De Wolf, PP. et al., <i>Perturbative confidentiality methods</i> (<u>Centre of Excellence on Statistical Disclosure</u> Control, Eurostat CROS portal, 2019 and github.com/sdcTools)
Marley and Leaver (2011)	J. K. Marley, V. L. Leaver, A Method for Confidentialising User-Defined Tables: Statistical Properties and a Risk-Utility Analysis (ISI Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS060))
Petti and Flaxman (2019)	S. Petti, A. Flaxman, A. (2019), Differential privacy in the 2020 US census: what will it do? Quantifying the accuracy/privacy tradeoff (Gates Open Research 2020, 3:1722)
Rinott et al. (2018)	Y. Rinott, C. M. O'Keefe, N. Shlomo, C. J. Skinner, <i>Confidentiality and differential privacy in the dissemination of frequency tables</i> (Statistical Science, 33(3):358–385; 2018)

Key references (2)

Ruggles et al. (2018)	S. Ruggles et al., Differential Privacy and Census Data: Implications for Social and Economic Research (AEA Papers and Proceedings, vol. 109, May 2019)
Santos-Lozada et al. (2020)	A. R. Santos-Lozada, J. T. Howard, A. M. Verdery, <i>How differential privacy will affect our understanding</i> of health disparities in the United States (PNAS June 16, 2020 117 (24))
Thompson et al. (2013)	G. Thompson, S. Broadfoot, D. Elazar, Methodology for the Automatic Confidentialisation of Statistical Outputs from Remote Servers at the Australian Bureau of Statistics (UNECE Work Session SDC, 2013)
U.S. Census Bureau (2018a)	S. L. Garfinkel, J. M. Abowd, C. Martindale, <i>Understanding Database Reconstruction Attacks on Public Data</i> (<u>ACMQueue, Vol. 16, No. 5 (Sep/Oct 2018): 28-53</u>)
U.S. Census Bureau (2018b)	J. M. Abowd, <i>Staring-Down the Database Reconstruction Theorem</i> (<u>Joint Statistical Meetings,</u> <u>Vancouver, BC, Canada, July 30, 2018</u>)
U.S. Census Bureau (2019)	L. Garfinkel, <i>Deploying Differential Privacy for the 2020 Census of Population and Housing</i> (<u>Joint</u> <u>Statistical Meetings, US Census Bureau, Washington, DC, 2019</u>)

