PROBIT MODELS FOR GROUPED-DATA MIGRATION FLOWS: A THEORETICAL NOTE

Coro Chasco

(Autonomous University of Madrid – UAM, Spain)

Luc Anselin

(University of Chicago, USA)

Patricio Aroca

(Adolfo Ibáñez University, Chile)

CONTENTS

- Motivation
- GProbit: an alternative approach for OD flow models
 - Model specifications: for independent and spatially correlated flows
 - Solutions for the spatial interaction model problems
- Application for migration interregional flows across NUTS 2 in Spain (2008 – 2012)
- Conclusions

I. MOTIVATION

- Interested in the formulation of migration models.
- **Migration modeling** has been applied to both, micro and macro-levels (*Aleshkovski and lontsev* 2006):

- Micro approach focuses on the migration behavior of individuals or households based on disaggregated data usually delivered by surveys. They are costly to collect or inaccessible. Tool: Discrete choice models.

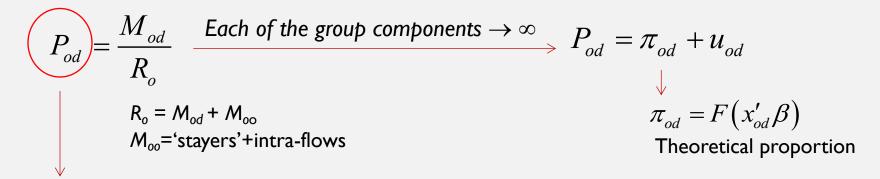
- Macro approach studies the patterns of migration of certain social groups within a given territory. Choice data is aggregated across groups of individuals in the form of counts or shares. Easier to obtain. Tool: Gravity or interaction models.

• Our database follows a macro approach =

We propose a **PROBIT CHOICE MODEL** but for **GROUPED-DATA** flows, due to some important specification problems of the standard spatial interaction models of flows (LeSage and Fischer 2010).

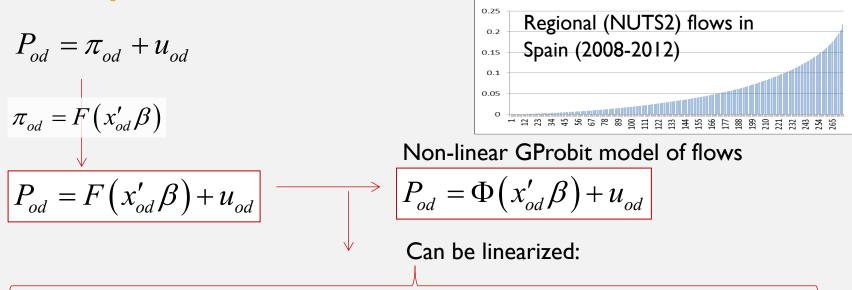
II. GPROBIT: AN ALTERNATIVE II. I. Specification

GProbit = Probit choice model for grouped-data flows.


Theoretical foundation: Random utility theory for aggregations of decisions (probabilities) made by individuals who share a similar characteristic; e.g. living in a same region.

Individual:

$$P(y = 1) = P(y^* \ge 0) = P(U_{od} \ge U_{oo})$$


$$y^* = U_{od} - U_{oo} = x'\theta + u$$

Adding up the independent probabilities for all the individuals who move from o to d.

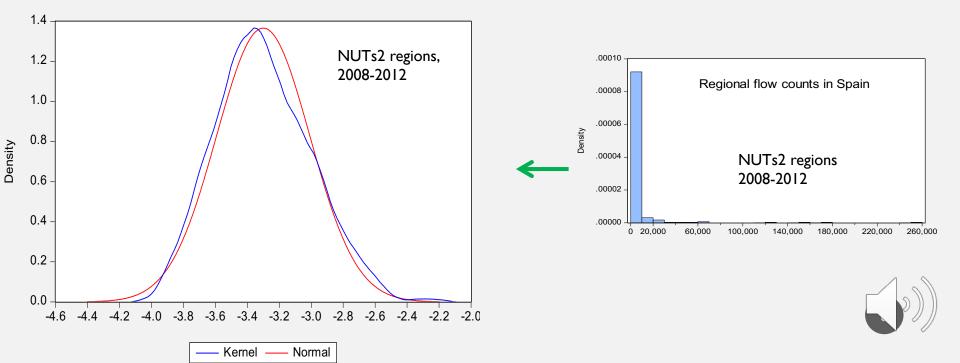
Share, proportion (relative frequency) of people who migrate from o to d during a certain period (M_{od}) over the total resident population living in o 'at risk' of migrating during this same period (R_o). 'Meaningful estimates of interaction probabilities between OD pairs' (Sen and Smith 1993)

II. GPROBIT: AN ALTERNATIVE

Cumulative shares

(Gourrieroux 2000, section 4.2):

Slutsky's theorem on convergence in probability + Large number of group shares


$$Z_{od} = \Phi^{-1}(P_{od}) = \alpha \iota_N + X_d \beta_d + X_o \beta_o + \lambda D + \varepsilon_{od}$$
Linear function GProbit
model of flows

Cumulative zMmij

0.0000

0.5000

1.500

1.000

1.500

2.500

Regional (NUTS2) flows in

3.000

3.500

5.500

Spain (2008-2012)

4.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

5.500

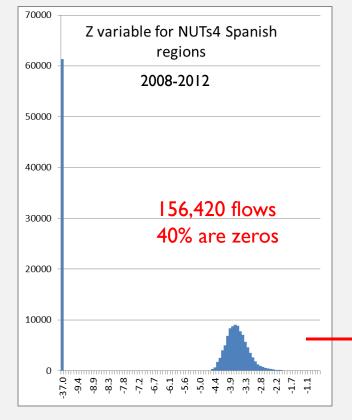
5.500

5.500

5.

II. GPROBIT: AN ALTERNATIVE II.2. Solutions for model problems #i

Problem	Spatial interaction model	Gprobit model for OD flows
Non-normality of	Instead of counts, log(counts)	y=z: inverse cumulative standard
count-data	(very frequent in the literature)	normal distribution of flow shares


Dependent variable (Z_{od}): inverse cumulative standard **normal** distribution of flow shares. Normality is assumed.

Z variable for regional flow shares in Spain

II. GPROBIT: AN ALTERNATIVE II.2. Solutions for model problems #ii

Problem	Spatial interaction model	Gprobit model for OD flows			
Zero flows	Instead of log(0), <mark>log(1+0)</mark> (LeSage & Pace 2008)	z's domain is 0-1 (zero is included)			

Zero is theoretically part of the domain Z values, because it is part of the shares (P_{od}) :

 $Z = \Phi^{-1}(P_{od})$ Domain = [0, 1]

In empirical apps. (STATA 2017), in order to linearize the model, the extreme values are:

 $Z = \Phi^{-1}(P_{od}) \rightarrow \text{Domain} = [10^{-323}, (1-2^{-53})].$

Hence, the values of the dependent variable Z range from -38.449394 to 8.2095362.

Zeros are possible values for Z, but always problematic when presented largely in a variable.

III. EMPIRICAL ILLUSTRATION FOR MIGRATION INTERREGIONAL FLOWS ACROSS NUTS 2 IN SPAIN (2008 – 2012)

- We illustrate the performance of a GProbit model to estimate internal migration flows for the 17 NUTS 2 regions in Spain taken from the EVR register, INE.
- Flows: (emigrants from o to d) / total o's in/out-emigrants).
- We compare the performance and results of this model with the gravitational model using the conventional log transformation of flows for the dependent variable.

III. EMPIRICAL ILLUSTRATION FOR MIGRATION INTERREGIONAL FLOWS ACROSS NUTS 2 IN SPAIN (2008 – 2012) #ii

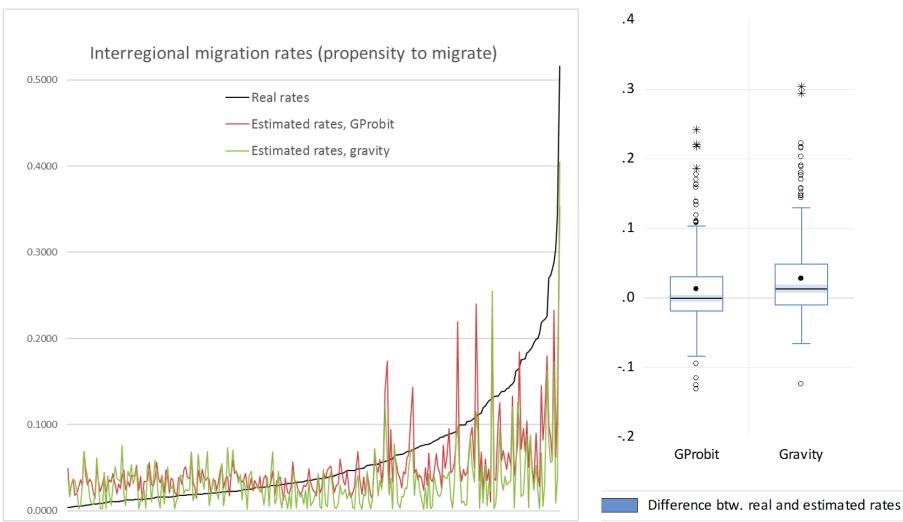
Variable Units Source								
Vallau	Dependent variable:	Units	source	Period				
Mod	Migrant flow (5-year sum)	Persons	Spanish National Statistics Office	2008-2012				
MOG	Independent variables:	reisons	Spanish National Statistics Office	2008-2012				
Income and quality of life								
	GDP per capita	Euros	National Statistics Office (INE)	2003-2007				
incpc	Household disposable income per		National Statistics Office (INE)	2003-2007				
mege	capita	Luios	National Statistics Office (INE)	2005-2007				
wage	Salaries and wages per capita	Euros	National Statistics Office (INE)	2003-2007				
act	Activity rate growth	Percentage	National Statistics Office (INE)	2003-2007				
	and housing markets	rercentage	National Statistics Office (INE)	2003-2007				
emp	Population	Percentage	National Statistics Office (INE)	2003-2007				
unem	Population	Percentage	National Statistics Office (INE)	2003-2007				
~~~~~~	Housing price	Euros	Ministry of Development of Spain	2003-2007				
<u>pviv</u> delin	People declaring having	Percentage	National Statistics Office (INE)	2003-2007				
aenn	delinquency problems	reicentage	National Statistics Office (INE)	2003-2007				
Agglen	neration economies							
Pop	Population	Persons	National Statistics Office (INE)	2003-2007				
dens	Population density		National Statistics Office (INE)	2003-2007				
aens	Population density	Persons per km ²	National Statistics Office (INE)	2003-2007				
PPu	Urban population share*	Percentage	National Statistics Office (INE) and	2003-2007				
a.a.a	orban population share	rereentage	self-elaboration	2005-2007				
pd3g	Population aged 25-64 with	Percentage	National Statistics Office (INE)	2003-2007				
pusg	university degree	rercentage	National Statistics Office (INE)	2003-2007				
rad	R&D expenditure per capita	Thou euros	National Statistics Office (INE)	2003-2007				
	l endowments	filou. curos	National Statistics Office (INE)	2003-2007				
tmed	Annual average temperature	Degrees	State Meteorological Agency	2003-2007				
	Annual maximum temperature	Degrees	State Meteorological Agency	2003-2007				
tmax	Annual minimum temperature	Degrees	State Meteorological Agency	2003-2007				
tmin	Sun hours	Hours	State Meteorological Agency	2003-2007				
sun rain	Atmospheric precipitation	Millimeters	State Meteorological Agency	2003-2007				
	Length of coastline (destination)	Km	National Geographic Institute	2003-2007				
marit Distanc			National Geographic institute	2003-2007				
Distanc	e: Origin – destination distance	Km	Self-elaboration with GIS	_				
Tod	Origin – destination travel time	Minutes	Self-elaboration with Google Maps	-				
100	ongin – desunation traver ume	winnutes	Sen-elaboration with Google Maps	-				

. Data has been ordered according to the origin-centric scheme.

. Flows: emigrants from o to d / total people of o who have changed their residence during this period (including intraregional movements).

. X: 'push' and 'pull' factors (ratio D/O values).

. D: log-transformed distance between the capital cities.


. In gravity model: log transformation of flows.



## **GPROBIT: OLS**

#### **Table 1:** Estimation results for the interregional migration models

	GProbit model	Gravity m	odel					
Dependent variable	$Z_{od} = \Phi^{-1}(M_{od}/M_o)$	ln( <i>M_{od}</i> )	ln( <i>M</i> oo)					
Dependent variable	(1)	(2)	(3)					
Constant	-1.820***	7.088 ^{***}	13.044 ***					
Population D/O ratio	0.036***	-	0.4·e ^{-7 ***}					
Housing price D/O ratio	-	-0.481**	-					
R&D expenditure p.c. D/O ratio	0.073***	0.137***	-					
Average altitude D/O ratio	-0.083***	-0.245***	-					
Annual max. temperature D/O ratio	-	-	-0.088 *					
Atmospheric precipitation D/O ratio	-0.081***	-	-					
O-D distance (log)	-0.158***	-0.244**	-					
Adj. R-squared	0.312	0.094	0.847					
Prediction accuracy measures for the propensity to migrate: $\hat{P}_{od} = \hat{M}_{od} / \hat{M}_{o}$ :								
Bias indicator (RBIAS)	0.79	4.04						
Coefficient of variation (CV)	1.16	311.03						
Relative root mean sq. error (RRMSE)	0.16	0.35						
Note: A robust inference of the GProbit mo	del estimators have beer	n computed.						



#### Fig. 1. Real, estimated and residual interregional flows, GProbit and gravity models



## IV. CONCLUSIONS

- Adjusted R² takes a very low value, particularly for the gravity model estimation, which is in line with other previous analysis in the literature.
- Spanish interregional migration has long been resistant to traditional economic explanations., even to core variables of income and employment (Mulhern & Watson, 2009).
- The strong rigidity of the Spanish labor market, centrally controlled by the trade unions, and a very high national unemployment discourages internal migration (Bover & Velilla, 1999) and instead promotes migration to other countries.



## IV. CONCLUSIONS

- Only a few push & pull factors explain internal migration flows among Spanish regions.
- **Physical distance** in straight line from OD regional capital citiers works better as a deterrence variable than travel time.
- Only socioeconomic agglomeration (population, house price and R&D investment), joint to climate variables explain internal flows among the Spanish regions.
- **Pending**: : analyze different types of migration flows by gender, age and nationality. Additionally, we also would like to apply this model approach to **other kind of flow data**.



## INE EXPERIMENTAL STATISTICS

euros	tat		Legal notice   Cookies   Links   🗘		Sign In   Register
Your key to E	uropean statistics		Type a keyword, a publ	lication title, a dataset ti	tle Q
News	Data	Publications	About Eurostat	Help	
European Commiss	sion > Eurostat > Experimental s	statistics > Overview			

#### **Experimental statistics – Overview**

#### INTRODUCTION

Experimental statistics use new data sources and methods in an effort to better respond to our users' needs.

For example, for the first time Eurostat is estimating price changes in the food supply chain, from farm to consumer. Another example is the use of Wikipedia as a new source to produce statistics on the visits to UNESCO World Heritage Sites. This is to measure not only the popularity of the sites but also the public's 'cultural consumption'.



As these statistics have not reached full maturity in terms of **EXPERIMENTAL** harmonisation, coverage or methodology, they are always marked with a clearly visible logo and accompanied by detailed methodological notes.

On the webpage of each of the experimental statistics, you can use the 'Send us a message' function to give us your feedback on how to improve our experimental statistics!



## EUROSTAT EXPERIMENTAL STATISTICS

	TIME_PERIOD	REF_AREA	ROW_PI	AT	BE	BG	СҮ	CZ	DE	DK	EE
)000	2010.0000	AT	CPA_N77	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_N78	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_N79	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_N80T82	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_084	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_P85	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_Q86	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_Q87_88	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_R90T92	0.0000	0.0293	0.0004	0.0000	0.0351	0.1381	0.0011	0.00
)000	2010.0000	AT	CPA_R93	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_S94	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_S95	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_S96	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_T	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	CPA_U	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
)000	2010.0000	AT	P1_TR	0.0000	110.2927	41.0389	2.2487	21.8427	738.2287	4.1604	<b>4.7</b> :
)000	2010.0000	BE	CPA_A01	4.6909	0.0000	0.1907	0.2686	1.7854	49.9638	0.2782	0.28
)000	2010.0000	BE	CPA_A02	0.0226	0.0000	0.0011	0.0001	0.0441	1.6632	0.0463	0.00
)000	2010.0000	BE	CPA_A03	0.3081	0.0000	0.0003	0.0128	0.0079	0.2229	0.0217	0.00
)000	2010.0000	BE	CPA_B	1.4868	0.0000	2.3000	0.0151	0.5998	70.0108	0.0202	0.02
)000	2010.0000	BE	CPA_C10T12	12.4209	0.0000	3.2608	3.1500	3.2888	88.3418	0.4066	1.1!
)000	2010.0000	BE	CPA_C13T15	9.8250	0.0000	1.7666	0.6212	5.4963	31.9853	0.4266	1.3
)000	2010.0000	BE	CPA_C16	0.8437	0.0000	0.1078	0.0878	0.3249	10.3177	0.0560	0.06
)000	2010.0000	BE	CPA_C17	7.4544	0.0000	0.6479	0.4351	1.4874	21.7783	0.1386	0.0
)000	2010.0000	BE	CPA_C18	0.5698	0.0000	0.0006	0.0134	0.0330	0.1936	0.0000	0.02
		<b>DC</b>	004 040	0.0057	~ ~~~~	A 6007	0 400F	A 4700		~ 4 4 4 7 7	4

FIGARO_ITTM_MATRIX +

Figaro Tables of international & sectoral trade flows (in current prices).

Regional trade flows?



## **THANK YOU!**

**Coro Chasco** 

#### (Universidad Autónoma de Madrid - UAM, Spain)

Luc Anselin

(University of Chicago, USA)

Patricio Aroca

(Universidad Adolfo Ibáñez, Chile)

