State space model for handling VAT revisions Klaudia Máténé Bella (klaudia.bella@ksh.hu) Ildikó Ritzlné Kazimir (ildiko.ritzlne@ksh.hu) Tímea Cseh (timea.cseh@ksh.hu) National accounts department of Hungarian Central Statistical Office ### Introduction/Overview #### Purpose: - 1. To investigate whether an incomplete VAT-declaration dataset can be used for GDP flash estimation. - To estimate VAT turnover growth rates, the expected revisions should be considered. Assumption: The dataset could be finalized after six months after the reference year. ## Background/Need - Need of economic policy for an early indicator - VAT is a possible early indicator, but - Revisions - Incomplete dataset due the late submissions - Estimation of GDP should be robust and must meet the requirements of timeliness an accuracy ## Vintage matrix of VAT - VAT turnover are available in vintage structure - Revisions can be calculated also for a vintage structure - Revision=final value/original value ### Method and results | Vintage/period | 01. 2015 | 02. 2015 | 03.2015 | 04. 2015 | 05. 2015 | 06. 2015 | | 07.2020 | 08.2020 | 09.2020 | |----------------|----------|----------|---------|----------|----------|----------|---|---------|---------|---------| | January 2015 | Х | | | | | | | | | | | February 2015 | Х | Х | | | | | | | | | | March 2015 | Х | Х | Х | | | | | | | | | April 2015 | X | Х | X | Х | | | | | | | | *** | | | | | | | | | | | | July 2020 | Х | Х | Х | Х | Х | Х | Х | Х | | | | August 2020 | Х | Х | Х | Х | Х | Х | Х | Х | Х | | | September 2020 | Х | Х | Х | Х | Х | Х | Х | Х | Χ | Х | - The columns contain the reference month, and the rows include each data submissions. - The rows of the matrix contain the data revision relating to the last data submission. - Using the vintage matrix, the revisions for all data submissions are calculated. - The revision matrix (W) contains VAT data revision from January 2015 to September 2020. ## Estimation of VAT 'final' value - Using state space model to forecast VAT turnover after expected revision - Depending variable is log value of VAT #### The state space model: 1. State equation: $y_t = \mu + \sum_{i=1}^{q} \alpha_i y_{t-i} + \eta_t$ where y_t is the log value of final VAT turnover data for reference month t, which cannot be observed. According to the state equation the log value of final VAT data is a q ordered autoregressive process (AR(2)) with expected value μ and expected error η_{t} . 2. Measurement equation: $$y_t^T = y_t + c^{T-t} + \varepsilon_t^T$$ where y_t^T is the submitted VAT turnover data in T month for the reference month t. c^{T-t} shows the log value of revision bias (log value of the ratio of final value and original VAT value) and the measurement error. VAT data are seasonal adjusted using X-12. ## Estimation of GDP at current prices MIDAS to forecast GDP - Depending variable is dlog value of quarterly **GDP** - Independent variable is dlog value of monthly VAT forecasted and smoothed by state space model ### The MIDAS model for **GDP** The model estimates the VAT revisions and the 'final' VAT turnover for the total economy for the period January 2020-December 2020. ### Conclusions and future work ### **Conclusions:** - This state space model presents a method to forecast VAT revision. - To estimate VAT turnover growth rates, the expected revisions should be taken into account. - The model - is able to forecast VAT revisions - helps provide better quality of growth rates and - causing smaller revisions in GDP index. #### **Future work:** - Implicit price index of Output should be forecasted by model in order to using as a deflator of VAT turnover - In this case, not only GDP value index, but also GDP growth value can be forecasted directly