
Machine learning in high-frequency ultrasound skin imaging for cosmetics assessment   

 

Massufero Vergilio, Mariane1; Flamini Kiihl, Samara2; Batista Florindo, João3; Soares de 

Freitas, Luan2; Ribeiro Duzzi, Matheus2; Martins, Dieine2; Moretti Aiello, Laura4; Ricci 

Leonardi, Gislaine1,5* 

1 School of Medical Sciences, University of Campinas (UNICAMP), SP, Brazil;2 Department 

of Statistics, Institute of Mathematics, Statistics and Scientific Computing, University of 

Campinas (UNICAMP), SP, Brazil; 3 Department of Applied Mathematics, Institute of 

Mathematics, Statistics and Scientific Computing, University of Campinas (UNICAMP), SP, 

Brazil; 4 School of Pharmaceutical Sciences, University of Campinas (UNICAMP), SP, 

Brazil. 

 

* Gislaine Ricci Leonardi, 200 Cândido Portinari st., +55 19 99203-0347, 

gislaine.leonardi@fcf.unicamp.br. 

 

Abstract  

Background: An effective way to assess the in vivo performance of anti-aging cosmetics is 

by using the high-frequency ultrasound (HFUS) skin image technique. Ultrasound-based skin 

measurements, such as echogenicity and thickness, are frequently used to evaluate skin 

conditions. Once manual measurements are operator-dependent and time-consuming, much 

research is being actively conducted on automated methods. However, the existing 

automated methods are still not specialized in measurements of the skin and its layers. The 

purpose of the study was to establish whether machine learning could be successfully applied 

to HFUS skin images and to develop new tools for cosmetic claims assessment.  

Methods: To predict each target variable (echogenicity of dermis and epidermis, thickness 

of dermis and epidermis) using the ultrasound images, our approach considered supervised 

machine learning algorithms. The best-performing model was selected for each variable 

using an independent validation set. For echogenicity variables, Gradient Boosting Machine 

(GBM) algorithm and Principal Component Regression (PCR) were chosen for thickness 

variables. Using the proposed method, a labeled dataset containing 144 ultrasound skin 

images was used for training, and validation was performed with 40 ultrasound skin images. 

Results: Our algorithms effectively predicted echogenicity and thickness variables, showing 

competitive performance. The dermis echogenicity variable stood out with a median absolute 

error (MAE) of 0.81 and a root mean squared error (RMSE) of 1.11 between the predicted 

and the expected value.  



Conclusion: Machine learning algorithms are able to reduce the time and increase the quality 

of the skin ultrasound analysis method.  
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Introduction 

For the evaluation and clinical efficacy of cosmetic products, the technique of skin 

image analysis by means of high frequency ultrasound (HFUS) stands out, which, in addition 

to being non-invasive, has shown great potential for application and characterization of 

changes in the skin [1]. The high frequency allows a detailed real-time visualization of the 

epidermis and dermis layers and subcutaneous tissue, allowing an in-depth characterization 

of several parameters [2]–[5]. 

This method provides quantitative tools such as thickness and acoustic impedance 

measurements of different skin layers; therefore, it can be used for non-invasive 

characterization and as a complementary and accurate instrument for the evaluation of skin 

diseases [2]–[5]. 

An HFUS imaging device uses the principle of transmitting short pulses of ultrasound 

energy to a given tissue and detecting the reflected waves (called echoes) resulting from the 

ultrasound wave-tissue interaction [6]. Echogenicity is a term used in radiology to describe 

how much a material allows the passage of or reflects ultrasound waves. In other words, 

echogenicity can be understood as the property of a given material, in this case the skin, to 

reflect ultrasound and originate echoes, which, in turn, generate echographic images, also 

called ultrasound [7]. 

The transducer is a very important component of the HFUS system, since it has a 

material with piezoelectric properties, it can convert electrical energy into vibrating 

mechanical energy, and vice versa, through the oscillatory expansion and contraction of the 

material [2], [8]. 

One of the main signal processing systems used to produce pulse-echo method 

recordings is the B-mode scanning [9]. In the B-mode scan processing system, the amplitude 

value is represented in shades of gray, ensuring the two-dimensional cross-sectional image 



that resembles the cross-sectional images of tissues [9], [10]. B-mode scanning system 

displays tissue echotexture, allowing characterization of collagen fibers, keratin and dermal 

water content [9].  

However, from this initiative a great challenge arises in the processing and evaluation 

of HFUS images, after all, within an image we can obtain several quantitative, semi-

quantitative and qualitative parameters. Given the large amount of material to be evaluated, 

manual analysis performed by a trained person can bring bias, loss of reliability and low 

effectiveness [11], [12]. The trend identified is the increased use of the automatic image 

segmentation process through artificial intelligence technologies [13]–[16]. Manual and 

automated methods of measuring ultrasound parameters are different, as previously 

demonstrated [17]. 

Supervised machine learning can be implemented from ultrasound images, which can 

prevent wrong diagnostic decisions. The machine learning algorithms used to predict the 

quantitative parameters (dermis echogenicity, epidermis echogenicity, dermis thickness and 

epidermis thickness) from the ultrasound images were the Gradient Boosting Machine 

(GBM) algorithm by Friedman (2001) and Main Component Regression (PCR) [18], [19]. 

Thus, the objective of this study was to train and test/validate a model to automate 

obtaining the HFUS parameters of the skin through machine learning; and further contribute 

with the evaluation of the effectiveness of a cosmetic product, evaluating the skin of the 

individual before and after the use of a certain cosmetic. 

 

Materials and Methods 

Data preparation 

The ultrasound image dataset was constructed from images in the untreated (control) 

region of participants in several studies carried out in the laboratory. These images were 

captured at different times and separated for further analysis in this dataset. The capture was 

performed on the ventral side of the forearm of 184 women, at a distance of 10 cm from the 

wrist. The region was previously demarcated according to the dimensions of the transducer, 

using a black hydrographic pen and a plastic mold (Figure 1). 

 



 

Figure 1. Scheme to obtain skin image using high-frequency ultrasound (HFUS). The tissue 

on the region of the interest (ROI) evaluated by the probe is reproduced as a real-time image 

in the visual display of the device (adapted from [12]). 

 

Linked to this process, a tabular data file was manually created with age, 

echogenicity, skin thickness and layers per participant. Thus, each of these characteristics 

form the following variables: 

- Age: variable of the study filled in after questioning by the researcher to each of the 

study participants and will try to be predicted using the images and covariates stored in the 

tabular data file. 

- Epidermis and dermis echogenicity: variables that record the echogenicity measure 

in different skin layers, the first one being the sum of the values found for epidermis and 

dermis [12]. 

- Thickness of epidermis and dermis: variables that record the distance between the 

beginning and end of a layer. This measurement is indicated by the researcher herself and the 

first measurement reflects the sum of the thickness of the epidermis and dermis [12]. 

 

Data modeling and evaluation 

To predict each target variable (echogenicity of dermis and epidermis, thickness of 

dermis and epidermis) using the ultrasound images, our approach considered supervised 

machine learning algorithms. Several methods were tested, but here we describe the 



algorithms with the best performance: the Gradient Boosting Machine (GBM) algorithm by 

[18] and Principal Component Regression (PCR) [19]. These methods were combined with 

feature extraction techniques from the ultrasound images. To extract the information from 

the images, Local Binary Patterns (LBP) histograms [20] were used. Then, principal 

component analysis (PCA) was applied to reduce the dimension and correlation of the LBP 

features. Hyperparameters tuning of the GBM algorithm was performed using leave-one-out 

cross validation (LOOCV). To tune, implement and validate the GBM and the PCR 

algorithms the R package caret [21] was used. LBP feature extraction from grayscale 

converted ultrasound images was performed using the wvtool R package [22]. GBM had the 

best performance to predict dermis_echogenicity and epidermis_echogenicity. To predict 

dermis_thickness and epidermis_thickness, PCR had the best performance. Metrics used for 

evaluation of the models: median absolute error (MAE) and root mean squared error 

(RMSE). The sample (n=184) was randomly divided into two: training (n=144) and testing 

(n=40) datasets respectively to train the models and test their prediction performance. 

 

Results 

Descriptive data (mean, SD, median, min and max) of age and of the echogenicity 

variables of the dermis and epidermis described in arbitrary units (AU); and thickness of the 

dermis and epidermis described in µm, measured manually, in the 184 ultrasound images of 

different participants, are presented in Table 1. The models developed here were based on 

the data in the table.  

 

Table 1. Descriptive data from the ultrasound image collection of participants with age, 

echogenicity and skin thickness data. 

  Age group 

(years) 

Number of 

values Mean SD Median Min Max Variables 

Age         

 10 to 19 1 19.0 0.0 19.0 19.0 19.0 

 20 to 29 8 24.9 2.1 25.0 22.0 29.0 

 30 to 39 20 35.9 3.1 37.0 30.0 39.0 



 40 to 49  73 45.2 2.9 45.0 40.0 49.0 

 50 to 59 70 53.5 2.7 53.5 50.0 59.0 

  60 to 69 12 62.5 2.5 62.0 60.0 68.0 

Epidermis echogenicity 

(AU)        

 10 to 19 1 155.6 0.0 155.6 155.6 155.6 

 20 to 29 8 107.4 30.2 98.4 67.8 144.7 

 30 to 39 20 102.5 25.9 104.8 39.7 150.0 

 40 to 49  73 95.7 28.7 95.9 13.0 157.4 

 50 to 59 70 99.9 20.2 97.9 60.9 165.0 

  60 to 69 12 123.2 27.2 121.6 86.6 172.2 

Edipermis thickness 

(µm)        

 10 to 19 1 82.0 0.0 82.0 82.0 82.0 

 20 to 29 8 73.3 15.0 76.0 51.0 94.0 

 30 to 39 20 71.0 17.4 71.0 11.0 93.0 

 40 to 49  73 77.6 17.6 78.0 12.0 106.0 

 50 to 59 70 79.2 17.3 82.0 23.0 128.0 

  60 to 69 12 92.8 12.5 94.0 66.0 109.0 

Dermis echogenicity 

(AU)        

 10 to 19 1 11.2 0.0 11.2 11.2 11.2 

 20 to 29 8 16.4 5.9 13.8 11.2 26.5 

 30 to 39 20 17.8 4.8 17.5 10.7 27.5 

 40 to 49  73 15.8 4.5 15.0 7.8 29.3 

 50 to 59 70 14.7 4.1 14.3 8.2 30.2 

  60 to 69 12 19.0 7.3 18.8 11.0 32.3 

Dermis thickness (µm)        

 10 to 19 1 945.0 0.0 945.0 945.0 945.0 

 20 to 29 8 1045.0 261.7 1002.0 622.0 1484.0 

 30 to 39 20 981.0 180.5 986.5 645.0 1383.0 

 40 to 49  73 1013.0 175.4 1008.0 668.0 1527.0 

 50 to 59 70 1040.0 190.1 1020.0 691.0 1539.0 

  60 to 69 12 1095.0 286.8 1037.0 672.0 1688.0 

AU= arbitrary units; SD=Standard deviation; Min= Minimum; Max=Maximum.  

After being developed, the models were trained and validated. The accuracy assumed 

by MAE and RMSE of the models are provided in Table 2. The values indicated better 

performance for the echogenicity variables (MAE values between 0.81 and 10.41 AU) than 

for the thickness variables (MAE values between 8.13 at 104.41 µm). The dermis 

echogenicity variable stood out with a MAE value of 0.81 and RMSE of 1.11. 



 

Table 2. Performance of the models for training and testing datasets. 

 

Target Variable Best 

Model 

Datasets MAE RMSE 

Dermis echogenicity GBM  Training 

(n=144) 

0.81 1.11 

Dermis echogenicity GBM  Testing (n=40) 1.94 2.57 

          

Epidermis echogenicity GBM  Training 

(n=144) 

6.25 8.54 

Epidermis echogenicity GBM  Testing (n=40) 10.41 12.98 

          

Dermis thickness PCR  Training 

(n=144) 

102.68 127.53 

Dermis thickness PCR  Testing (n=40) 104.41 143.21 

          

Edipermis thickness PCR  Training 

(n=144) 

8.86 12.37 

Edipermis thickness PCR  Testing (n=40) 8.13 10.77 

 

AU= arbitrary units; GBM= Gradient Boosting Machine; PCR= Principal Component 

Regression; MAE= median absolute error; RMSE= root mean squared error. 

 

To better characterize this good performance, Figure 2 shows the proximity of the 

observed values to the predicted values for each variable, as well as the respective values of 

the Spearman coefficient index (α=0.05). 



Figures 2a and 2b show the predicted values of dermis echogenicity by the GBM 

algorithm and the actual values observed in the test sample and in the training sample. The 

diagonal line represents the strong and positive (R=0.96) and strong and positive (R=0.81) 

prediction for the training sample and the test sample, respectively. Figures 2c and 2d show 

the predicted values of epidermis echogenicity by the GBM algorithm and the actual values 

observed in the test sample and in the training sample. The diagonal line represents the strong 

and positive (R=0.97) and strong and positive (R=0.81) prediction for the training sample 

and the test sample, respectively. Figures 2e and 2f show the predicted values of dermis 

thickness by the PCR algorithm and the actual values observed in the test sample and in the 

training sample. diagonal line represents the moderate and positive (R=0.77) and moderate 

and positive (R=0.70) prediction for the training sample and the test sample, respectively. 

Figures 2g and 2h show the predicted values of epidermis thickness by the PCR algorithm 

and the actual values observed in the test sample and in the training sample. The diagonal 

line represents the moderate and positive (R=0.71) and moderate and positive (R=0.77) 

prediction for the training sample and the test sample, respectively. These data indicate that 

the performance was superior for the echogenicity variables when compared to the thickness 

variables.  

 



 

Figure 2: Prediction results of (A) training and (B) testing data from GBM algorithm for 

ecogenicidade da derme values; (C) training and (D) testing data from GBM algorithm for 



ecogenicidade da epiderme values; (E) training and (F) testing data from PCR algorithm for 

espessura da epiderme values; and (G) training and (H) testing data from PCR algorithm for 

espessura da derme values by HFUS. The x and y axis represent observed and predicted 

values respectively. 

 

Discussion 

It is known that with advancing age the echogenicity of the skin tends to decrease, 

since it is related to the content and organization of collagen fibers in the skin; and also 

changes in skin thickness [12]. To develop the model, the ventral region of the forearm was 

chosen for the collection of HFUS data. The forearms are one of the areas of the body that 

stand out for assessing skin aging. [23]. In addition, at HFUS, site differences are also closely 

related to the fact that these areas are more or less exposed to the sun [24], [25]. Furthermore, 

in HFUS, the differences in sites are also closely related to the fact that these areas are more 

or less exposed to the sun, since the relative reduction in skin thickness caused by aging is 

smaller in the areas exposed to the sun compared to with the protected areas [25], [26]. In 

addition, photo-protected regions present greater echogenicity of the dermis [24], [25], [27], 

due to the degradation of the dermal extracellular matrix, caused by UV [25].  

As a result of this study, it was observed that our algorithms effectively detect and 

measure echogenicity and skin layer thickness variables. Clinically, to support cosmetic 

claims, the error values of the models are within the expected range, since the expected values 

vary around 10% from the actual values [28]. We consider this to be highly valuable for 

future cosmetic development, as HFUS analyses can be performed without invasive sampling 

that can cause physical and mental stress in the subjects. Sample accessibility has been a key 

challenge with conventional methods to expand and perform more general analyses. 

Interestingly, the most successful variable, dermal echogenicity, is also the most 

studied variable in ultrasound imaging for the assessment of skin aging [14], [23]. It is 

suggested that both the prediction models and the dermis echogenicity variable itself is the 

most reliable parameter for skin assessment by HFUS. 



As a future perspective, we aim to evaluate the ability of algorithms to detect the 

benefits of a skin treatment, by replicating the results obtained in a clinical study, evaluating 

echogenicity and thickness before and after a given treatment. In addition, we would like to 

test the skin image analysis tool on a larger set of skin image data, on participants of different 

ages, genders and ethnicities, as well as different skin aging conditions. 

 

Conclusion 

The study developed here showed the possibility of automatic prediction of 

fundamental dermatological variables for the development and evaluation of cosmetics. In 

particular, the use of machine learning algorithms such as GBM and PCR showed promise 

especially in the prediction of dermis echogenicity, reaching a MAE of 0.81 and RMSE of 

1.11. Through mathematical algorithms, the possibility arises of reducing these evaluations 

to minutes and further accelerating the development of new strategies for evaluating cosmetic 

claims. The developed system brought very promising data, and could be improved and later 

coupled to high-frequency ultrasound equipment, allowing an easier use, with less bias, and 

therefore more effective in evaluating the effectiveness of prescribed dermocosmetics. The 

use of machine learning algorithms has the potential to revolutionize the reality of clinical 

dermatology, research, as well as companies that sell products to improve skin conditions. 
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