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Abstract  

Background: The study aimed at identifying quantitative biomarkers (i.e. histological and 

cellular parameters) of facial skin ageing by means of in vivo Line-field Confocal Optical 

Coherence Tomography (LC-OCT) 3D imaging coupled to Artificial Intelligence (AI). 

  

Methods: Hundred Caucasian female volunteers evenly distributed in 5 age groups [20,30], 

[31,40], [41,50], [51,60] and [61,70] years old were included. LC-OCT acquisitions were 

performed on 3 zones: Cheekbone, temple and mandible. Skin layers thickness and cell 

morphology (cell density, nuclei volume, nuclei shape and cell network atypia) were derived 

from 3D stacks using AI based algorithms. Cellular metrics distribution across the viable 

epidermis were also extracted to witness age-related variations in keratinocytes maturation.          

    

Results: For the mandible, cell surface density (ANOVA p<0.001), nucleus compactness 

(KRUSKAL WALLIS p=0.029), nucleus volume (KRUSKAL WALLIS p = 0.011), standard 

deviation of nucleus volume (KRUSKAL WALLIS<0.001) and cell network atypia 

(ANOVA p < 0.001) displayed significant differences between age groups. Similar 

observations were made for the temple and cheekbone. The spatial distribution of cellular 

metrics as function of depth highlighted the potential of LC-OCT to quantify abnormalities 

in keratinocytes maturation in the viable epidermis.       

 

Conclusion: 3D LC-OCT in vivo imaging coupled to AI algorithms enabled to quantify 

several histological and cellular epidermal parameters (metrics) to highlight age-related 

modifications. The technique resolution provides information about the thickness of layers, 

however modifications in nuclei volume, compactness and atypia of the cell network have 

been identified as potential key biomarkers to quantify skin ageing in healthy female 

volunteers.    

 

mailto:fbonnier@research.lvmh-pc.com


Keywords: Healthy skin, ageing; Line-field Confocal Optical Coherence Tomography; non-

invasive 3D imaging; 3D quantification; Artificial Intelligence  

 

Introduction.  

 
Ageing is a natural and complex biological process that inevitably affects all organs 

and structures of the human body. Skin appearance, that defines the perceived age of an 

individual by others, is the result of multiple modifications at molecular and cellular levels. 

Visible signs of ageing, notably skin sagging, wrinkles, sunspots, and uneven skin colour can 

result in a psychological angst from individuals alongside with the change in their body 

image [1]. Face skin appearance greatly impacts societal interactions, therefore, delaying the 

appearance of visible signs revealing the stages of ageing has become a major concern in 

society to improve self-acceptance and prevent societal exclusion. Longevity and anti-ageing 

are fields of research constantly expanding that are aiming at a better understanding of 

biological processes. Although, atlases can be used for scoring the severity of these clinical 

signs (i.e wrinkles and sagging) [2], skin ageing results from the accumulation of molecular 

damage over time, potentially exacerbated by a combination of intrinsic (genetics, cellular 

metabolism, hormonal and metabolic processes) and extrinsic factors (chronic light exposure, 

pollution, ionizing radiation, chemicals, toxins), that makes the correlation between 

physiological mechanisms involved and visible effects of ageing difficult. Genetic, 

epigenetic, and lifestyle predispositions have been well studied to provide an overview of 

causes that can lead to the onset of first clinical signs of ageing. However, it is established 

that constant exposure to natural and anthropogenic “chemical” environment significantly 

affects skin physiology and health. Therefore, the exposome factors are increasingly studied 

as potentiators for skin aging to better understand the role of well-known factors such as sun, 

pollution, and tobacco to trigger molecular processes that damage the skin structure, leading 

to the aged skin appearance, but also to identify other factors, less well studied. Actions of 

reactive oxygen species (ROS), mtDNA mutations, and telomere shortening, as well as 

hormonal changes are few of parameters studied using advanced omics approaches 

(genomics, methylomics, metabolomics, proteomics…) to decipher the discrepancies 

between the biological age (ageing clocks) and the chronological age (civil age).  



The reduction in epidermal thickness, flattening of the dermo-epidermal junction and 

alteration of the dermal structures are the main histological characteristic of skin ageing.    

While age-related changes in the mechanical properties have been extensively investigated 

in vivo using torsion or suction devices [3], enabling non-invasive, in vivo, visualisation of 

underlying microstructures of the epidermis and dermis remains a challenge to fully 

comprehend, monitor and quantify the modifications occurring below the surface. High-

frequency ultrasound (HFUS) is a well-established cost-effective tool for rapid imaging of 

skin. Although instruments operating at frequencies 50-75 MHz are popularised nowadays, 

the resolutions (lateral and axial) achieved are rather suited to investigate the dermis and 

subepidermal low-echogenic band (SLEB) properties [4]. Other microscopic techniques, i.e. 

Reflectance Confocal Microscopy (RCM) [5,6], Confocal Laser Scanning Microscopy 

(CLSM) [7,8] or multiphoton laser scanning microscopy [9] can be used to reach higher 

definition of skin features in the epidermis and (upper) dermis. Despite, optical techniques 

provide high resolution of ~1 μm, depending on the laser source and focusing optics used, 

the penetration depth can be limited (~250 μm) [10]. Optical Coherence Tomography (OCT) 

is widespread in the biomedical field with a penetration depth of ~2 mm, depending on tissue 

types. Although, OCT has a substantial advantage compared to other clinical imaging 

methods such as ultrasound and MRI, its resolution ~7.5 μm [11], greatly limits applications 

for superficial skin analysis, notably to discern single cells and to distinguish the different 

layers of the epidermis in detail [12]. High-definition OCT (HD-OCT) however enabled to 

improve isotropic resolution to ~3 μm with a penetration depth of ~500 μm [13]. In recent 

years, Line-Field Confocal OCT (LC-OCT) has emerged as a promising device for in vivo 

non-invasive imaging combining the advantages of OCT and optical microscopy, hence a 

penetration up to a depth of ~500 μm and an isotropic resolution of ~1 μm are achieved [14]. 

LC-OCT coupled to Artificial Intelligence (AI) has been reported to investigate age-related 

modifications in skin [15] while segmentation algorithms are promising methods to derive 

3D quantitative parameters such as skin layer thicknesses (SC and epidermis) and 

keratinocyte network information (nuclei size, shape and density) as well as the thickness 

and density of the superficial dermis [16]. 

The objective of this study was to determine specific histological and cellular metrics 

(parameters) for the non-invasive assessment of facial skin ageing from a large cohort of 



Caucasian female volunteers (n=100) to study the potential of LC-OCT to identify 

quantitative biomarkers for in vivo clinical studies.  

 

Materials and Methods.  

 

Study population 

Hundred Caucasian female volunteers evenly distributed in 5 age groups [20,30], 

[31,40], [41,50], [51,60] and [61,70] years old were included in this exploratory study that 

has been conducted over a 12-week period from May 2021 with a 1-day participation for 

each volunteer (DERMATECH, France). Among inclusion criteria, a good health condition 

and subject with I, II or III skin phototype (according to Fitzpatrick’s scale) were considered. 

The study was supervised by the French ethical committee “Comité de protection des 

personnes sud méditerranée I” according to the principles expressed in the Declaration of 

Helsinki, and written informed consent was obtained from all participants. DeepLiveTM 

analysis, i.e. acquisitions using Line-field Confocal Optical Coherence Tomography (LC-

OCT®), were done on the cheek bone, temple and inferior jawline (mandible). A 

randomisation method was used to define the side of the face (left or right) assessed for each 

subject.   

 

LC-OCT® imaging  

Images were collected using a DeepLiveTM system (DAMAE MEDICAL, France) 

that provides in vivo 3D visualisation (Figure 1). The two-beam Linnik interference 

microscope equipped with a supercontinuum laser with line illumination at central 800 nm 

wavelength enables acquisition of tomographic images perpendicular and parallel to the 

surface of the skin at 8 frames per second with micrometric lateral and axial resolutions [15]. 

Paraffin oil was used as an immersion medium that matches the refractive index of the skin 

(n ∼ 1.4). Pigmented spots were excluded from acquisitions. For the purpose of the study 4 

LC-OCT 3D images (1200 µm x 500 µm x 350 µm) were acquired as stacks of slices parallel 

to the skin surface with a 1 μm step size (z direction). Between each 3D image the probe was 

moved by approximatively 1-2 mm. Metrics extracted from the analysis of LC-OCT images 

using deep learning algorithms are thickness of skin layers (SC and viable epidermis), 



undulation of the dermo epidermal junction (DEJ), the number of cell layers, and cellular 

metrics (cellular density, shape of the nuclei (volume/compactness) in the epidermal layer 

and cell network atypia). 

 

 

Figure 1: Example of LC-OCT images on healthy skin. A: 3D stack, B: 2D horizontal 

image (xy) and C: 2D reconstructed vertical image (xz)  

 

 LC-OCT® images analysis 

 

Thickness of layers and DEJ segmentation: First, 2D U-net models were applied to 

segment each reconstructed vertical image (Figure 1B) to allow the prediction of 3 classes of 

pixels corresponding to the different skin interfaces: i.e. pixels below the skin surface, below 

the SC and below the dermo-epidermal junction (Figure 2). Second, in order to obtain a 3D 

result, the algorithm was applied to all vertical views in both xz and yz directions. Third, the 

outcome of the segmentations for 3D LC-OCT images was checked by a trained operator and 

regions that correspond to hair follicles were exclude from the calculation of the metrics. The 

SC thickness and viable epidermis thickness are respectively derived from average numbers 

of pixels between the segmented skin surface and segmented SC interface; and the segmented 

SC and the segmented DEJ (Figure 2).  



 

Figure 2 : Segmentation of layers. A: Skin surface, B: SC-Viable epidermis 

interface and C: Epidermis-Dermis interface (i.e. dermal- epidermal junction) 

   

The DEJ undulation was defined as the surface area of the dermo-epidermis interface 

normalised by the area of the analysed field of view [17].  

The DEJ undulation index was calculated as followed [18]:  

Udej = (SDEJ / SROI) -1,  

with SDEJ being the area of the DEJ layer and SROI being the total horizontal area of the LC-

OCT image without areas corresponding to hair follicles.  

 

Cellular metrics: For the segmentation of keratinocytes, a deep learning model (AI 

algorithm) based on 3D convolutions was used as described previously [17]. The architecture 

used was 3D StarDist model [19] since it detects 3D star-convex shapes at instance level, 

similar to keratinocyte nuclei. This deep learning model, based on a variant of a 3D 

ResNet18, was trained from scratch without transfer learning as no known pretrained weights 

were available for a similar task up to now. StarDist3D uses 3D convolutions to predict at 

voxel level (3D pixel) the probability of being the centre of a nucleus and the length of the 

different radii defining the nucleus. 96 radii were used, defined from a 3D Fibonacci lattice, 

to accurately account for 3D nuclei diversity. The probability threshold for cell detection and 

the Non-Maximum Suppression threshold were set to 0.5 and 0.05, respectively, allowing 

touching but non-overlapping cells to be detected. Additional details are provided in the study 

reported by Chauvel-Picard et al [17]. 



 

From the segmentations of all cells of the viable epidermis, the following metrics 

were calculated: cell density, volume and shape of the cell nuclei, the number of cell layers 

as well as cell network atypia.  

Cell density expressed as cell number/mm2 is the total number of nuclei in the 

epidermis divided by skin surface area. 

Nucleus volume was expressed in μm3 and computed using star-convex polyhedra for 

the detection and segmentation of cell nuclei. For each 3D stack, the nuclei were sorted by 

their volume and separated into five categories, from the smallest (quintile I) to the largest 

(quintile V), each quintile containing 20% of the total number of nuclei (Figure 3).  

Nucleus compactness was used as an indicator of sphericity that was calculated from 

the 3D surface area of the nucleus (A) and cell volume (V) (36ΠV2/A3). The compactness is 

expressed with scores ranging from 0 to 1, where 1 represents a perfect sphere. For each 3D 

stack, similarly to nucleus volume, quintile I (less compact) to quintile V (most compact) 

were calculated.  

 

 

Figure 3:  Illustration for cell segmentation. Blue : Smallest cells corresponding to 

quintile I, Green: intermediate cells corresponding to quintile II, and Red: Largest cells 

corresponding to quintile V. 



The number of cell layers was calculated from the average number of cells crossed 

on the vertical axis between the SC/SG junction and the DEJ interface.  

 Cell network atypia can be considered as the detection of outliers in the cell 

population using features derived from nuclei segmentation. The results are binary scores 

classifying nucleus as atypical or not. For this purpose, the algorithm was trained using 

pathological and healthy skins based on the assumption that atypical nuclei occur during 

pathological process such as actinic keratosis or Squamous cell carcinoma. More details 

about the model used (XGBoost [20]) can be found in [21]. Presently, the analysis was 

performed on each 3D stack individually. 

 

Cellular maturation: Cellular metrics can be analysed as function of depth in the 

viable epidermis. The number of cell layers displayed intra and inter volunteer variability 

therefore the distribution of metrics was subdivided into 5 depth indexes between 0, 

corresponding to the deeper part of the epidermis at the interface with the dermis, and 1 that 

represents the upper part at the interface with the SC. Presently, the nucleus compactness, 

nucleus volume and cell network atypia were studied.      

 

Statistical analysis: Statistical analysis were performed using MATLAB 

(MathWorks, USA). Quantitative variables were described by means, standard deviations, 

minimum, maximum, median, q1, q3. For each quantitative variable allowing to qualify the 

skin of the subjects, an ANOVA was carried out in order to compare the subjects according 

to the age groups. The normality of the ANOVA residues was assessed by a Shapiro-Wilk 

test, with a significance level set at 10%. In the event that the normality of the residuals was 

not verified, a Kruskal-Wallis test was used as an alternative. When ANOVA (or Kruskal-

Wallis test) was significant, a post-hoc test was performed to compare age groups two to two, 

with Tukey's adjustment to account for multiple comparisons.  

 

 

 

 

 

 



Results 

 

1) Thickness of skin layers 

 

 

Figure 4: Thickness of skin layers measured with LC-OCT on the cheekbone, temple and mandible 

according to age groups. Results from pairwise comparisons among age groups are indicated 

above boxes: two age groups that do not share a common letter are significantly different. 



Boxplots in Figure 4 present the SC thickness and viable epidermis thickness determined by 

LC-OCT on the cheekbone, temple and mandible (inferior jawline) as box plots. The central red line 

inside the box corresponds to the median value, the top and bottom edges of the blue box are 

respectively the Q3 (third quartile) and Q1 (first quartile) values and the whiskers indicate the 

maximum and minimum values. Outliers are represented by red marks. 

For the cheekbone, median values for SC thickness display little variations with respectively 

12.1µm (age group [20,30]), 12.4 µm (age group [31,40]), 12.2 µm (age group [41,50]), 12.1 µm (age 

group [51,60]) and 12.3 µm (age group [61,70]) (Figure 4). The KRUSKAL WALLIS (p = 0.31) 

confirms no significant difference was observed. For the temple, the median value for age group 

[20,30] was 13.0 µm compared to 14.0 µm for the age group [61,70]. The KRUSKAL WALLIS 

(p=0.005) confirms significant differences in SC thickness between age groups while the pairwise 

comparisons indicates that age group [61,70] is statistically different from age group [20,30] (p = 

0.008). Similarly, for the mandible the SC thickness displayed an increase from 13.1µm (age groups 

[20,30]) to 13.9µm (age group [61,70]) with a p value from KRUSKAL WALLIS = 0.04, and with 

the main difference observed for the last age group compared to others. The thickness of the viable 

epidermis determined from LC-OCT images showed limited variations for the cheekbone 

(KRUSKAL WALLIS p = 0.34) and the temple (KRUSKAL WALLIS p = 0.43) however a thinning 

is observed for the mandible (KRUSKAL WALLIS p < 0.001) that exhibited median values of 53.7 

µm and 47.5 µm for respectively age groups [20,30] and [61,70]. The multiple comparison test 

highlighted that age group [61,70] is different from age groups [20,30] and [31,40] while age groups 

[41,50] and [51,60] are not separated from either younger or older volunteers. 

 

2) Cellular metrics 

 

For the mandible, cell surface density (ANOVA p<0.001), cell compactness 

(KRUSKAL WALLIS p=0.043), cell volume (KRUSKAL WALLIS p = 0.011), standard 

deviation of cell volume (KRUSKAL WALLIS<0.001) and cell network atypia (KRUSKAL 

WALLIS p < 0.001) displayed significant differences between age groups. The mean cell 

surface density decreases from 31640+/-4247 cells/mm2 for age group [20,30] to 26835+/-

3511 cells/mm2 for age group [61,70] and the multiple comparison test showed that age 

groups [20,30]/[31,40] were significantly different from age groups [51,60]/[61,70] (Table 

1). Cell compactness exhibits a slight decrease from 0.78+/-0.01 (age group [20,30]) to 

0.77+/-0.01 (age group [61,70]) but age groups could not be separated.  



Cell volume tends to increase with means equal to 148+/-10 µm3 and 158+/-11 µm3 for 

respectively the first and last age groups that are found significantly different, however age 

groups [31,40], [41,50] and [51,60] do not belong to a different subgroup and are rather an 

intermediate cluster. While cell volume does not enable to separate age groups, the standard 

deviation of this metric, that is calculated for each 3D stack individually, displays higher 

variations with age groups (KRUSKAL WALLIS p<0.001) (Figure 5). The mean values 

increase from 69+/-5 (age group [20,30]) to 79+/-10 (age group [61,70]) and the 2 age groups 

were found significantly different with the pairwise analysis.  

Cell network atypia increases according to age group with respectively 0.170+/-0.03 (age 

group [20,30], 0.18+/-0.03 (age group [31,40]), 0.20+/-0.04 (age group [41,50]), 0.21+/-0.04 

(age group [51,60]) and 0.22+/-0.05 (age group [61,70]). The multiple comparison test 

further highlights the evolution of this metric according to age with the first and last groups 

identified as different subgroups while intermediate age groups reflect the gradual increase 

of cell network atypia values with aging.       

 

 



 

Figure 5: Cellular metrics determined from the LC-OCT for the mandible according to age groups.  



Table 1: Summary of cellular metrics for the mandible. Results from pairwise comparisons 

(multiple comparison test) among age groups are indicated: two age groups that do not share a 

common letter are significantly different. 

Parameters [20,30] [31,40] [41,50] [51,60] [61,70] 

Cell surface 

density 

(cell/mm2) 

Mean (sd) 31641 (4247) 31940 (4117) 30220 (3630) 26888 (3700) 26835 (3511) 

Med 
[Q1-Q3] 

32037  
[28186-35705] 

32242  
[29952-33122] 

29895  
[27116-33592] 

26754  
[24083-30015] 

27384  
[25092-28846] 

Min-Max 23379-38153 22848-40607 24000-35825 19683-32474 18724-32077 

Mult. comp. a a ab b b 

Cell 

compactness 

Mean (sd) 0.78 (0.01) 0.77 (0.01) 0.77 (0.01) 0.77 (0.01) 0.77 (0.01) 

Med 
[Q1-Q3] 

0.78  
[0.77-0.79] 

0.78  
[0.77-0.78] 

0.77  
[0.76-0.77] 

0.77 
 [0.77-0.78] 

0.77 
 [0.77-0.78] 

Min-Max 0.75-0.80 0.75-0.79 0.74-0.79 0.75-0.79 0.74-0.78 

Mult. comp. - - - - - 

Cell 

compactness 

(standard 

deviation) 

Mean (sd) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 

Med 
[Q1-Q3] 

0.09  
[0.09-0.09] 

0.09  
[0.09-0.10] 

0.09  
[0.09-0.10] 

0.09  
[0.09-0.10] 

0.09  
[0.09-0.10] 

Min-Max 0.08-0.11 0.08-0.10 0.08-0.11 0.08-0.11 0.08-0.11 

Mult. comp. - - - - - 

Cell volume 

(µm3)  

Mean (sd) 148 (10) 154 (9) 155 (7) 154 (9) 158 (11) 

Med 
[Q1-Q3] 

144  
[143-151] 

152  
[147-163] 

155  
[151-158] 

154  
[149-157] 

156  
[151-162] 

Min-Max 138-175 140-168 142-171 140-173 147-196 

Mult. comp. a ab ab ab b 

Cell volume 

(Standard 

deviation) 

Mean (sd) 69 (5) 71 (6) 74 (4) 74 (6) 79 (10) 

Med 
[Q1-Q3] 

68  
[66-70] 

71  
[68-75] 

74  
[72-76] 

74  
[70-76] 

75  
[74-81] 

Min-Max 60-85 61-81 65-85 62-88 68-110 

Mult. comp. a ab bc bc c 

Cell network 

atypia 

Mean (sd) 0.17 (0.03) 0.18 (0.03) 0.20 (0.04) 0.21 (0.04) 0.22 (0.05) 

Med 
[Q1-Q3] 

0.16  
[0.17-0.16] 

0.17 
 [0.17-0.21] 

0.19  
[0.18-0.21] 

0.20  
[0.17-0.22] 

0.21  
[0.19-0.24] 

Min-Max 0.11-0.27 0.11-0.25 0.12-0.31 0.15-0.28 0.16-0.40 

Mult. comp. a ab abc bc c 

 

For the temple (data not shown), decrease of the cell surface density from 30291+/-

3942 cells/mm2 (age group [20,30]) to 26049+/-3574 cells/mm2 (age group [61,70])  

(ANOVA p = 0.019), increase of cell volume from 145+/-6 µm3 (age group [20,30]) to 150+/-

9 µm3 (age group [61,70]) (KRUSKALWALLIS p = 0.096) and increase of cell network 

atypia from 0.21+/-0.02 (age group [20,30]) to 0.25+/-0.03 (age group [61,70]) (ANOVA p 

<0.001) were also observed.   

For the cheekbone (data not shown), the mean cell volume increased from 156+/-8 µm3 (age 

group [20,30]) to 160+/-12 µm3 (age group [61,70]) (ANOVA p = 0.5) that didn’t enable to 



differentiate the different age groups, however similarly to the mandible the standard 

deviation for cell volume displayed greater variability with respectively 72+/-5 and 78+/-8 

(ANOVA p = 0.002). The multiple comparison test on the cell volume standard deviation 

identified the age group [61,70] as significantly different. The cell compactness exhibited a 

slight decrease from 0.77+/-0.01 age group [20,30] to 0.75+/-0.16 age group [61,70] 

(ANOVA p < 0.001). However, no significant variation in cell network atypia and cell 

surface density was found with respective mean values ~0.24 and ~26000 cells/mm2 for all 

age groups. 

Interestingly the analysis also enables to compare metrics from different facial skin 

areas. For instance, taking age group [20,30] as example, the cell surface density appears 

lower for the cheekbone (26936+/-3849 cells/mm2) compared to mandible (31600+/-4246 

cells/mm2) and temple (30291+/-3942 cells/mm2) while the mean cell volume is found higher 

with 156+/-8 µm3 (cheekbone) compared to 148+/-9.7 µm3 (mandible) and 145+/-6 µm3 

(temple). Cell network atypia display significant differences with 0.24+/-0.02 for the 

cheekbone compared to 0.17+/-0.03 for the mandible and 0.21+/-0.02 for the temple.  

 

3) Metrics as function of depth (cell maturation) 

When performing 3D imaging with techniques like LC-OCT, the information (i.e. 

cellular metrics) can be interpreted as function of depth within the tissue (see material and 

methods). Figure 6 A and 6 B present nucleus compactness and cell network atypia in the 

viable epidermis for the mandible. It was observed that for all age groups the evolution of 

cell compactness follows the same pattern with mean values decreasing from ~0.8 for the 

depth index 0 (interface dermis / epidermis) to ~0.65 for the depth index 1 (interface living 

epidermis / SC) (Figure 6A). These variations somehow reflect the cell maturation from basal 

layer to stratum granulosum, and they provide insight into modifications of cellular shapes 

and size during the process. For instance, for nucleus compactness, at depth index 0.5 and 

0.75, a difference is seen between the age groups. Figure 6C shows the boxplots constructed 

from metrics at the depth index 0.5.  A decrease as function of age groups was found. Cell 

network atypia also displays a decrease as function of depth indexes (figure 6B). Although 

the means are comparable at depth index 0 (~0.23-0.24), at depth index 1 the means values 

significantly differ. The boxplots for the depth index 0.5 in figure 6B confirm the increase in 



cell network atypia as function of age groups. Table 2 gathers mean values for nucleus 

compactness and cell network atypia for the mandible. For nucleus compactness it is 

observed that there are no significant differences between age groups for depth indexes 0 (p 

= 0.279) and 0.25 (p=0.236), however for depth indexes 0.5, 0.75 and 1 the ANOVA 

delivered respectively p = 0.035, p= 0.001 and p= 0.001. For the cell network atypia, at depth 

index 0 there is also no significant differences between age groups, but like nucleus 

compactness it is in skin layers closer to the SC that values differ. At depth index 0.5 

(p=0.001), the mean value for age group [20,30] is significantly lower (0.169+/-0.044) 

compared to age group [61,70] (0.241+/-0.073). This difference is still observed at depth 

index 1 (p<0.001) with mean values equal to 0.106+/-0.017 (age group [20,30]) and 0.162+/-

0.074 (age group [61,70]). For nucleus volume, only depth index 0.75 (p=0.017) and depth 

index 1 (p=0.002) shows significant differences with respectively means values increasing 

from 165.3+/-17.5 µm3 to 188.5+/-28.3 µm3 and 220.1+/-6.7 µm3 to 245.1+/-25 µm3 for age 

groups [20,30] and [61,70] (Table 2). 

Similar observations were made for the temple and cheekbone (data not shown). For 

example, the cell network atypia for the temple at depth index 0.5 exhibit values equal to 

0.153+/-0.028 for age group [20,30] and 0.199+/-0.048 for age group [60,70]. At depth index 

1, a similar difference is observed between the 2 age groups with atypia 0.115+/-0.017 and 

0.152+/-0.044. Similarly for the cheekbone, cell network atypia at depth index 1 is 0.115+/-

0.017 and 0.143+/-0.034 for age groups [20,30] and [61,70] while cell volume at the same 

depth index was found to be 222.65+/-17.2 µm3 and 236.07+/-29.7 µm3 for the same age 

groups.  

 

    



 

Figure 6 Examples of metrics studied as function of depth for the mandible, for each age 

group. Relative index is given as depth index scores from 0 (interface viable 

epidermis/dermis) to 1 (interface epidermis/SC). A: Means for cell compactness, B: Means 

for cell atypia, C: Box plot at relative depth 0.5 for cell compactness and D: Box plot at 

relative depth 0.5 for cell atypia. Red: age group [20,30], green: age group [31,40], blue: 

age group [41,50], yellow: age group [51,60] and black: age group [61,70] 

 

Table 2 Summary of cellular metrics as function of depth index (Mandible)  

Parameters 
Depth index 

0 

Depth index 

0.25 

Depth index 

0.5 

Depth index 

0.75 

Depth index 

1 

Nucleus 

compactness  

Mean (sd) 

[20,30] 0.808 (0.018) 0.812 (0.016) 0.799 (0.016) 0.744 (0.017) 0.650 (0.027) 

[31,40]  0.813 (0.013) 0.813 (0.010) 0.793 (0.012) 0.736 (0.016) 0.644 (0.026) 

[41,50] 0.805 (0.009) 0.805 (0.010) 0.779 (0.019) 0.720 (0.028) 0.642 (0.023) 

[51,60] 0.807 (0.012) 0.805 (0.010) 0.784 (0.013) 0.734 (0.022) 0.659 (0.026) 

[61,70] 0.807 (0.008) 0.806 (0.008) 0.784 (0.011) 0.730 (0.020) 0.654 (0.026) 

P value 0.279 0.236 0.035 0.001 0.001 



Parameters 
Depth index 

0 

Depth index 

0.25 

Depth index 

0.5 

Depth index 

0.75 

Depth index 

1 

Cell network 

Atypia 

Mean (sd) 

[20,30] 0.233 (0.036) 0.205 (0.044) 0.169 (0.044) 0.123 (0.028) 0.106 (0.017) 

[31,40]  0.222 (0.025) 0.205 (0.037) 0.192 (0.048) 0.154 (0.043) 0.117 (0.023) 

[41,50] 0.237 (0.023) 0.225 (0.042) 0.203 (0.062) 0.167 (0.055) 0.128 (0.024) 

[51,60] 0.236 (0.027) 0.229 (0.045) 0.218 (0.057) 0.176 (0.056) 0.139 (0.030) 

[61,70] 0.241 (0.018) 0.243 (0.043) 0.241 (0.073) 0.204 (0.086) 0.162 (0.074) 

P value 0.193 0.022 0.002 0.001 <0.001 

Nucleus 

volume 

(µm3) 

Mean (sd) 

[20,30] 127.8 (7.0) 128.6 (7.6) 138.5 (11.9) 165.3 (17.5) 220.1 (6.7) 

[31,40]  125.8 (4.4) 129.7(6.0) 145.0 (13.0) 180.9 (19.1) 235.1 (23.0) 

[41,50] 129.8 (3.6) 131.5 (5.6) 144.8 (9.6) 182.6 (15.6) 237.1 (16.0) 

[51,60] 130.4 (7.4) 131.8 (5.1) 145.5 (10.9) 180.0 (24.3) 224.8 (21.9) 

[61,70] 131.8 (5.6) 133.0 (5.8) 147.9 (15.0) 188.5 (28.3) 245.1 (25.0) 

P value 0.016 0.163 0.175 0.017 0.002 

 

 

Discussion.  

LC-OCT imaging couple to AI is a powerful approach enabling in vivo 3D 

visualisation of skin structures. The micrometric resolution of the system allowed to derive 

histological and cellular metrics from the 3D stacks to deliver quantitative analysis of healthy 

facial skin ageing. A previous study by Monnier et al. conducted on seven body sites from 

29 young volunteers (mean age = 25.9 years) using 2D LC-OCT imaging [22] showed 

significant variations in the thickness of skin layers and DEJ undulation, especially between 

hand and cheek. These observations were confirmed by Chauvel-Picard et al. with an 

investigation including 8 female volunteers with age ranging from 20 to 60 years old [17]. 

Additionally, it was highlighted that cell density (cell/mm2), Number of cell layers, nucleus 

volume and nucleus compactness are quantitative cellular metrics exhibiting significant 

differences according to body sites. The present study however emphasised on the 

investigation of age-related variation in facial skin from a much larger cohort of volunteers 

(n=100), targeting 3 zones, i.e. cheekbone, temple and mandible. Using the same age group 

[20,30] for comparison, the thickness of the SC found, i.e. cheekbone = 12.1+/-0.5 µm, 

temple = 13.2+/-0.8 µm and mandible = 13.1+/-0.4 µm, are higher compared to the 2 previous 

studies that respectively reported means equal 9+/-1 µm and 9.7+/-1.6 µm [17,22]. That is 

potentially explained by the different area analysed (cheekbone versus cheek). The epidermis 

thickness is however consistent with respectively 48.4+/-6.5 µm (cheekbone), 54.5+/-6.5 µm 



(temple) and 55.1+/-7.2 µm (mandible) in the present study compared to 59.4+/-4.6 µm and 

58.7+/-8.7. Moreover, it was also confirmed the flatness of the DEJ and the number of cell 

layers (~5) for the cheek area (data not shown) hence they do not represent relevant metrics 

for the study of age-related modifications. The cell density displayed substantial differences 

with 42 823+/-3021 cells/mm2 reported for the cheek by Chauvel-Picard et al. while 

presently means calculated were lower with 26936+/-3849 cells/mm2 (Cheekbone), 30291+/-

3942 cells/mm2 (Temple) and 31641+/-4247 cells/mm2 for the mandible. However, the 

means calculated in this study for the age group [20,30] alone resulted from 180 3D stacks.   

It was found that cell density decreases with age that can be a result of the decreased mitotic 

activity and increased duration of cell cycle observed with ageing [23]. Nevertheless, the 

most relevant observation is the distribution cellular metrics according to depth in the viable 

epidermis. This layer consists primarily of keratinocytes (~95% of cells), Langerhans cells 

(~2%), melanocytes (~3%) and Merkel cells (~0.5%) [24], therefore it can be considered that 

results reflected the maturation of keratinocytes. The cell nucleus compactness and volume 

indicate that smaller and more spherical cells are located deeper in the epidermis, at a depth 

index corresponding to the basal layer (Figure 6). The decreasing in compactness and the 

increase in volume for depth indexes closer to the SC (outer part of the epidermis) highlight 

the sensitivity of LC-OCT to detect and monitor modifications in cell shape and size 

correlated with cell maturation [25]. The literature about visualization of impairment of cell 

morphology is mainly limited to characterization from 2D histological or microscopic 

horizontal sections [10,26,27]. LC-OCT enabled quite uniquely to quantify the variations in 

cellular metrics according to age but also to interpret results according to distribution across 

3D stacks. Results demonstrated the feasibility to determine keratinocyte abnormalities with 

aging that can result from the loss of polarity and a disorderly maturation [28,29], that can 

be used as biomarkers. This is the first exploratory investigation focusing on facial skin 

ageing in healthy volunteers and aiming at acquiring biological knowledge about the 

chronological and photoaging processes. Advanced in vivo imaging such as LC-OCT coupled 

to AI have a key role to play for the understanding microstructural and (sub-)cellular 

mechanisms involved.                               

 
 
 
 



Conclusion.  

3D LC-OCT imaging coupled to AI algorithms enabled to quantify several 

histological and cellular epidermal parameters (metrics). The technique is a powerful 

approach to study age-related modifications hence it provides a unique tool to better 

comprehend the process at a micrometric level. Moreover, the method could have valuable 

inputs for investigating efficacy of cosmetic topical products. Presently, accessing detailed 

information about cells maturation and correlating variations with age groups open 

perspectives for further exploratory studies. Nuclei volume, compactness and atypia of the 

cell network have been identified as potential key biomarkers to quantify skin ageing in 

healthy female volunteers.    
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