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Abstract (Maximum of 250 words) 

Cleansing foams can contain ingredients in an infinite number of combinations, which 

renders formulation optimization difficult. In this study, we used artificial intelligence (AI) 

with machine learning to build a cleansing capability prediction system that incorporates the 

effects of surfactant self-assembly and chemical characteristics of the ingredients. On one 

hand, more than 500 cleansing foam samples were prepared and tested. On the other hand, 

we applied molecular descriptors and Hansen solubility index for estimation of cleansing 

capability for each formulation set. Five machine learning models were applied to predict the 

cleansing capability. We also used an in-silico formulation, which produces formulations 

virtually with PC and predicts the cleansing capabilities with the established AI model. 

An accuracy of R2=0.765 was obtained. We observed that mixtures of cosmetic ingredients 

demonstrated interactions among each other, and this type of non-linear behavior increased 

the difficulty of predicting the cleansing performance. However, the use of descriptors of 

chemical characteristics ensured high accuracy, and with the assistant of the in-silico 

formulation, we identified a cleansing foam formulation consisting of eicosaglycerol 

hexacaprylate and PPG-9 diglyceryl ether or cyclohexylglycerin that exhibited a high 

cleansing capability of >85% for the removal of waterproof eyeliner. We expect that our 



system will help significantly reduce the effort required for the development of new and 

effective cosmetics. 

 

Keywords:  AI; machine learning; cleansing capability; formulation; cleansing foam 

 

Introduction.  

Cleansing foam is used to wash excess sebum and dirt from skin and make-up remover is 

used to remove make-up cosmetics. Recently, from the viewpoint of shortening time 

(reducing procedures) and eco-friendliness (saving water and reducing the release of 

chemical substances into environment), there is an increasing need for a single product to 

serve as cleansing foam and make-up remover within one product[1]. 

Solvent-based cleansing agents such as make-up remover oils exhibit high solubility to the 

makeup products, which themselves are made of oil and pigments, resulting in excellent 

removability. However, problems are associated with solvent-based cleansing agents such as 

high environmental loads and material costs, in addition to the feeling of residual oiliness 

after rinsing[2]. In contrast, surfactant-based cleansing agents such as cleansing foams have 

excellent rinsing properties but weak oil removability, because they are mainly water-based. 

In this study, the latter approach was adopted to improve the cleansing performance of 

cleansing foams.  

Cleansing foams are composed of numerous ingredients, which makes formulation 

optimization difficult as an infinite number of ingredient combinations are possible. 

Therefore, artificial intelligence (AI) using machine learning was introduced into the 

formulation design to construct a cleansing capability prediction system that considers the 

effects of surfactant self-assembly and chemical characteristics of ingredients. Moreover, in-

silico simulations was introduced in order to assist human formulators and obtain desirable 

products in a product development process. 

 

 

  



Materials and Methods.  

1. Evaluation of cleasing capability 

Cleansing foam samples (more than 500 formulations), consisting of ionic surfactants, 

amphoteric surfactants, nonionic surfactants, polyols, a pH adjuster, and water, were 

prepared by mixing thoroughly by heating while mixing thoroughly and stirring. Some 

examples of ingredients are listed in Table 1. To test the prepared samples, first, a waterproof 

eyeliner pencil on a piece of white artificial leather, which was dried for 30 min. Then, 0.1 

mL of the corresponding cleansing foam sample was added on the dried eyeliner, which was 

rubbed 30 times, and rinsed, and dried. A schematic of all procedures is shown in Fig. 1. 

The cleansing capability was evaluated using the eyeliner-pencil residual ratio, calculated by 

color differences as follows: 

 

Cleansing capability (%) ＝ !(#!
∗$##∗ )#&('!∗$'#∗)#&((!∗$(#∗)#

!(#!∗$#$∗ )#&('!∗$'$∗)#&((!∗$($∗)#
×100 

 

where L* indicates lightness, and both a* and b* indicate chromaticity, and the L*a*b* is the 

color space measured by a colorimeter (CM-2600d, Konica Minolta, Inc.). L*a*b*0, L*a*b*1, 

and L*a*b*2 represent the color space value of the white artificial leather before applying the 

eyeliner-penci, after applying it, and after cleansing it respectively[3]. 

 

 
Fig. 1 Schematic of the evaluation test to determine the cleansing capability of the 

prepared formulations in this study 

  



Table 1 Examples of ingredients used in the formulations prepared in this study  

  

Material Name Structure

potassium cocoyl glutamate

potassium cocoyl glycinate

lauramidopropyl hydroxysultaine

sodium cocoamphoacetate

eicosaglycerol hexacaprylate

decaglycerol isostearate

PEG-20 glyceryl triisostearate

PPG-9 diglyceryl ether

cyclohexylglycerin

glycerin

pH adjuster 1 citric acid

base 1 water

Examples
Categoly The # of

Ingredients

anionic surfactant

amphoteric surfactant

nonionic surfactant

polyols

8

4

24

33

 

 

 

 

 

 

 

 

 

 



2. Modeling of AI 

Fig. 2 shows the date processig flowchart. 

 

 
Fig. 2 Data processing flow 

 

2.1 Molecular Descriptors 

A molecular descriptor is defined as a numerical basic molecular property extracted from the 

chemical structure. Each type of molecular descriptors is related to a specific type of 

interaction between chemical groups in a particular molecule. Descriptors are utilized for 

prediction of chemical properties of not only single chemical, but also of chemical mixtures 

[4-7]. Also descriptors are applied for prediction of CMC of gemini surfactants[8]. Therefore, 

we extracted information from ingredients and predicted cleansing capabilities of the 

prepared formulations using molecular descriptors. These values were calculated from each 

ingredient’s chemical structure formula with chemoinformatic tools, rdkit[9] and PaDEL-

descriptors[10]. Entries with infinite or only one values were removed, and a k-NN imputer 

was applied to predict missing values. Then, the weighted average of an ingredient was 

calculated using mol or weight fraction to estimate the descriptor values of mixtured 

ingredients.  
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2.2 Hansen Solubility Parameters (HSPs) 

We applied Hansen Solubility Parameters (HSPs) for the prediction of cleansing capability. 

HSPs were developed by Charles M. Hansen to predict if a material’s ability to dissolve in 

another material and form a solution. HSPs are usually used to estimate whether solute 

dissolve in solvent by calculating HSPs distance between solute and solvent. There are some 

reports in which HSPs are utilized for prediction of properties of surfactants [11,12]. In this 

study, instead of solute and solvent, we calculated the distance between each sample and 

obtained cleansing form samples with highest cleansing capability. We adopted this 

procedure because solute, an eyeliner in this study, was made of many ingredients and 

difficult to identify its structural formula. The HSPs distance is defined as {4*(dD1-dD2)2+ 

(dP1-dP2)2+(dH1-dH2)2}0.5, where dD1, dP1 and dH1 are values of each sample —weighted 

average by weight fraction for mixture— and dD2, dP2 and dH2 are average values of three 

highest cleansing capability. We expected that HSPs can estimate the effects of the 

interactions between the ingredients in a formulation better than the descriptor method, in 

which the non-linear effect of the interaction of the ingredients was difficult to measure. 

HSPs values were calculated by the HSPiP software. Because some HSPs cannot be 

calculated by HSPiP for molecules with high molecular weight, missing HSPs values were 

imputed by a k-NN imputer as the descriptor caluculation. 

 

2.3 Modeling and Feature Selection 

With the use of descriptors and HSPs, the number of explanatory variables were greater than 

1,000. Therefore, we applied machine learning to obtain lows for predicting cleansing 

performance from these numerous features. There are three types of machine learning 

algorithms: supervised learning, unsupervised learning, and reinforcement learning. Because 

our intention was to predict results within a continuous output, we selected supervised  

learning (regression) in this study. The input dataset was described in sections 2.1 and 2.2, 

and the output was the cleansing capability. We adopted two tree-based models (Random 

Forest Regressor and Extra Tree Regressor), two linear-based models (Lasso and Partial 

Lease Square), and one support-vector based model (SVR). Hyperparameters are shown in 

Table 2. The hyperparameters were optimized based on a grid-search method. All 

explanatory features were standarized with a mean of zero and standard deviation of one. 



Because numerous features will cause a noise in the modeling, we also adopted Boruta 

method[13] to extract important features. 

 

Table 2 Hyperparameter set for modeling 

  
 

2.4 Model Evaluation 

The prediction performance was evaluated based on 10-fold cross validation with the indices 

of validated R2, which represents the proportion of the variance for a dependent variable that 

is explained by independent variables. 

 

3. In-silico formulation and actual cleansing capabilities 

To evaluate whether the AI models could support human formulators, we made formulations 

virtually with a computer by the rules described below. We call this procedure the ‘in-silico 

formulation’. 

• All ingredients were assigned into one of six categories (same categories described in 

Table 1), which are anionic surfactants, amphoteric surfactants, nonionic surfactants, 

polyols, a pH adjuster (only citric acid), and a base (only water). 

• In order to compare predicted and actual cleansing capabilities, the selection of anionic 

and amphoteric surfactant was restricted to one kind respectively ―an anionic surfactant 

was restricted to potassium cocoyl glutamate, and an amphoteric surfactant was restricted 

to lauramidopropyl hydroxysultaine. 

• Only one kind of ingredient was selected from each category, e.g., two nonionic 

surfactants could not be selected in one formulation. 

Model Name Hyperparameter Minimum Maximum Interval

ExtraTreeRegressor

n_estimators 25 125 25

max_features 50 300 50

min_sample_leaf 20 50 10

min_sample_split 15 45 15

RandomForrestRegressor
max_depth 5 25 5

n_estimators 10 25 5

SVR
log10(C) -4 2 1

kernel Linear or RBF

PLS n_components 1 20 1

Lasso log10(Alpha) -4 2 1



• The addition rates of each ingredient except for pH adjuster (citric acid) and water were 

randomized for each category within the predefined range described in Table 3. The 

addition rate of citric acid was fixed with the value of 0.8 weight%, and the addition rate 

of water was calculated so that the sum of all ingredients became 100%. 

• 105 of formulations were made in the procedure, and these formulations were predicted 

with the best model describe the Section 2. 

 

In order to validate the predictions made by the in-silico formulation, actual cleansing 

capabilities of some formulations were measured (the formulations of measured samples will 

be shown in the Results section). 

 

Table 3 Condition of in silico formulation 

(water content was excluded in the weight% expression) 

 

 
 

Results. 

1. Modeling of AI 

An AI model was established to predict cleansing capability. The prediction accuracy for 

each model was shown in Table 4. The best prediction accuracy was obtained with R2=0.765. 

The prediction accuracy increased significantly with the use of descriptors. The results of the 

best model, Random Forest Regressor with a use of molecular descriptors, Hansen Solubility 

Index and feature extraction are shown in Fig. 3. 

 

Categoly Material Name Randomize
the addition rate

Minimum
weight%

Maximum
weight%

anionic surfactant potassium cocoyl glutamate Yes 3 20

amphoteric surfactant lauramidopropyl hydroxysultaine Yes 3 20

nonionic surfactant
eicosaglycerol hexacaplyrate

PPG-20 glyceryl triisosterarate etc.
(24 kinds in total)

Yes 0 10

polyols
PPG-9 diglyceryl ether

glycerin etc.
(33 kinds in total)

Yse 0 30

pH adjuster citric acid No

base water No 100-Σ(other material amount)

0.8 % (fixed ratio)



 

Table 4 Prediction accuracy for each model 

 
 

 
Fig. 3 Experimental vs predicted values of the cleansing capabilities of the cleansing 

form formulations 

 

2. In-silico formulation and actual cleansing capabilities 

The cleansing capabilities of the in-silico formulations are shown in Fig. 4 and Fig. 5. A box 

with light ang dark gray color in these figures indicate the middle 50 percent of the data (that 

is, the middle two quartiles of the data's distribution), and horizontal bars display all points 

within 1.5 times the interquartile range (in other words, all points within 1.5 times the width 

of the adjoining box), or all points at the maximum or minimum extent of the data. In Fig. 4, 

# Mol/Weight 
Fraction Descriptors Hansen 

Solubitiy Index Feature Extraction ExtraTree
Regressor

RandomForest
Regressor SVR Lasso PLS

1 weight Not Use Not Use Not Use 0.425 0.654 0.494 0.531 0.527
2 mol Not Use Not Use Not Use 0.408 0.654 0.485 0.509 0.502

１−２ - - - - 0.017 -0.001 0.009 0.022 0.025

3 weight Use Not Use Not Use 0.581 0.724 0.528 0.571 0.557
4 mol Use Not Use Not Use 0.598 0.757 0.477 0.535 0.535

３−４ - - - - -0.018 -0.032 0.051 0.037 0.022

5 weight Use Use Not Use 0.579 0.722 0.545 0.597 0.559
6 mol Use Use Not Use 0.598 0.757 0.503 0.564 0.541

５−６ - - - - -0.019 -0.035 0.042 0.033 0.018

7 weight Use Use Use 0.610 0.755 0.544 0.581 0.549
8 mol Use Use Use 0.657 0.765 0.511 0.535 0.518

７−８ - - - - -0.047 -0.010 0.033 0.046 0.032



we found eicosaglycerol hexacaprylate exhibited the highest cleansing capabilities in the 

point of both the median value (middle horizontal line in each box) and the best value (top 

horizontal line). 

In Fig. 5, we stratified these formulation data into three categories, those not using nonioic 

surfactants, those using nonionic surfactants other than eicosaglycerol hexacaprylate, and 

those using eicosaglycerol hexacaprylate. Next, we stratified each category into 

subcategories with a kind of polyols in order to estimate the interactions with nonionic 

surfactants and polyols. We found the nonionic surfactants increased the cleansing 

capabilities, and hydrophobic PPG-9 diglyceryl ether or cyclohexylglycerin with lower IOB 

(Inorganic and Organic Balance) values boosted the cleansing capability more than glycerin. 

Eicosaglycerol hexacaprylate, PPG-9 diglyceryl ether, and cyclohexylglycerin have similar 

IOB values, suggesting that hydrophobic polyols inhibit an aggregation of eicosaglycerol 

hexacaprylate molecules, and promote efficient adsorption of eicosaglycerol hexacaprylate 

on makeup dirt. 

In order to validate prediction data obtained in the in-silico formulation, we selected some 

formulations and measured the cleansing capabilities of them. The formulations and results 

were shown in Table 5. Nonionic surfactant eicosaglycerol hexacaprylate and 

cyclohexylglycerin/PPG-9 diglyceryl ether ―(A), (B), and (C) in Table 5― showed the 

highest cleansing capabilities in actual formulations. Formulations with other nonionic 

surfactants and cyclohexylglycerin/PPG-9 ―(D) to (H) in Table 5― showed lower cleansing 

capabilities. Formulations with glycerin ―(I) and (J) in Table 5― showed much lower 

cleansing capabilities regardless of the kind of nonionic surfactant. These tendencies 

corresponded to results in Fig. 4 and Fig. 5. The prediction accuracy was better in the range 

of cleansing capabilities with more than 70% and those with less than 15%, which also 

corresponded to results in Fig. 3 where predictions of both high and low cleansing capabilities 

were more accurate.  

 



 

 
Fig. 4 Box plots of cleansing capabilities with the in-silico formulation, 

stratified with nonionic surfactants 

  



 
Fig. 5 Box plots of cleansing capabilities with the in-silico formulation, 

stratified with nonioic surfactants and polyols 

 

Table 5 Formulations for comparison of predicted and actual cleansing capabilities 

 

 
 

Discussion.  

The use of descriptors increased the prediction accuracy increased in all models, which 

indicates that the chemical properties expressed as molecular descriptors successfully 

Category Material Name (A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

anionic surfactant potassium cocoyl glutamate 6 7 6 7 13 9 13 8 8 7

amphoteric surfactant lauramidopropyl hydroxysultaine 5 9 7 8 4 6 6 9 7 7

eicosaglycerol hexacaprylate 10 10 7 10

hexaglycerol caprylate 10

decaglycerol isostearate 10

decaglycerol laurate 10

PEG-20 glyceryl triisostearate 10 10

PEG-8 glyceryl isostearate 10

PPG-9 diglyceryl ether 11 14 13 11

cyclohexylglycerin 9 6 11 14

glycerin 11 13

pH adjuster citric acid 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

base water 69.2 62.2 73.2 63.2 58.2 60.2 57.2 61.2 63.2 62.2

prediction / % 79.0 78.8 75.6 59.6 58.5 40.6 38.1 34.7 10.6 9.8

actual / % 85.8 85.9 79.1 37.3 39.8 15.4 29.7 46.3 8.3 3.6

nonionic surfactants

polyols

Cleansing capability test



enabled the prediction of cleansing capabilities. However, HSPs did not improve the 

prediction accuracy. 

Furthermore, for the calculation of weighted average calculation, mol% was suitable for tree-

based models, whereas wt% was suitable for linear-based models. The mol% of the weighted 

average is considered potentially more accurate based on stoichiometry, because water 

constitutes >97 mol% on average in formulations. Therefore, the influence of water is more 

dominant. Linear-based models are affected more by this influence than tree-based models. 

For the prediction of cleansing capability, nonlinear behavior should also be considered 

owing to the interactions between surfactants and water molecules, and their self-assembly. 

Tree-based models are usually more suitable for non-linear prediction; therefore, their 

prediction accuracies are higher than those of linear-based models.  

The in-silico formulation helped us understand the effect not only of each material to 

cleansing capabilities but also of combination by materials with the consequence of 

molecular interactions. The in-silico formulation also assisted us of making formulations 

with higher cleansing capabilities. 

In this study, by applying the prediction method and the in-silico formulation method, we 

identified a cleansing foam formulation consisting of eicosaglycerol hexacaprylate and 

cyclohexylglycerin/PPG-9 that exhibited a high cleansing capability of >85% for the removal 

of waterproof eyeliner.  

 

Conclusion.  

Using an artificial intelligence (AI) with machine learning, we have built a cleansing 

capability prediction system that incorporates the effects of surfactant self-assembly and 

chemical characteristics of the ingredients. The accuracy of R2=0.765 was obtained in the 

prediction of cleansing performance. Non-linear behavior, i.e. interactions among cosmetic 

ingredients in formulations, made it more difficult for formulators to predict their 

performance. However, high accuracy was obtained by incorporating chemical 

characteristics with descriptors. This AI prediction model based on the molecular structure 

of the ingredients and surfactant self-assembly showed higher accuracy and was better than 

conventional approaches such as multiple linear regression. With the use of the in-silico 

formulation, formulators can obtain information of which ingredients should be selected in 



order to obtain highest cleansing capabilities. The prediction model and the in-silico 

formulation may contribute to a significant reduction in the effort required for the cosmetics 

development. 
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