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Abstract  

In the cosmetics industry, quickly delivering new products for the constantly diversifying 

and evolving market is essential. To quickly develop products that meet these needs, 

formulators are required to improve their ability to design novel formulations effectively. On 

the other hand, the current formulation design practice in repeating hypothesis construction 

and prototype-based verification experiments is time-consuming and resource intensive. 

Therefore, we considered how to build an AI that can be trained using cosmetics information 

to accelerate the development of the formulator. To accomplish this, we designed an AI that 

predicts the quality of the finished cosmetics and provides appropriate information for 

formulators. First, we acquired data related to cosmetic products such as ingredients, creation 

process, physical properties or tactile sensations. Then we developed prediction models that 

connects the tactile sensation data with formulation data using a machine learning algorithm, 

and designed an AI system that uses these prediction models. Through use of the AI, 

formulators were able to experience the improvement of their design skill efficiency. By 

expanding the limits of human skills with AI, cosmetic chemists should be able to develop 

innovative and revolutionary formulations and give cosmetics possibilities of new functions 

and uses. 
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Introduction 

In the cosmetics industry, customer’s needs are diversifying and evolving so formulators 

need to efficiently design various formulations more than ever before. Additionally, 

sustainability is also an important theme in the cosmetics industry and companies are starting 

research and implementation of sustainability. Specifically, it is crucial for formulators to 

create cosmetics using only environmentally friendly ingredients, based on each country’s 

increasing restrictions of chemical substances such as the European Green Deal strategy [1]. 

However, the outcome of this initiative may result in development being slowed as the variety 

of ingredients is insufficient to meet market needs, and it is additionally likely to hinder 

improvement of product quality. In other words, formulators need to quickly and effectively 

combine environmentally friendly ingredients to efficiently design formulations that meet 

various customer needs. 

In order to quickly design a wide variety of formulations, formulators should improve not 

only their knowledge of ingredients and emulsions but also their skill to design formulations 

by considering the impact on the quality of cosmetics when specific ingredients are combined. 

For improving this “design skill”, formulators usually train themselves by repeating 

hypothesis construction and verification by creating prototypes. However, this trial and error 

process of prototype creation takes a lot of time and it is not an efficient way to improve their 

“design skill”. On the other hand, there are few reported systems for formulator training and 

only programs that teach basic knowledge about formulation are available [2]. 

Therefore, in order to effectively improve “design skill” of formulators, we considered 

how to build a training cycle with an AI that can be trained using cosmetic information. Since 

the AI is able to very rapidly predict the quality of the finished product from the formulation, 

formulators can nearly instantly compose and verify their hypotheses in silico. In addition, 

information regarding the relationship between ingredients and cosmetic qualities discovered 

by the AI will broaden formulator's knowledge. Furthermore, by creating actual prototypes 

after AI simulation and evaluating them with comparing collected data, we expect useful 

feedback can be obtained and the next formulation design can be precisely implemented. 

To achieve this, we developed an AI that predicts the quality of finished cosmetic products 

and provides information such as the ingredient and the creation process related to cosmetic 

qualities to formulators. In this study, we focused on physical property and tactile sensation 



as cosmetic qualities, which are crucial for formulation design. First, we collected data on 

the in-house marketed cosmetics that can be used for machine learning model (ML model) 

training. Input data of ML models is mainly formulation information such as ingredients and 

creation process that have been designed by formulators. Additionally, physical properties of 

formulation are thought to be important for predicting the tactile sensation of a cosmetic 

product because there are several studies on the relationship between tactile sensation and 

physical property of cosmetics [3, 4, 5, 6]. However, physical properties are not suitable as 

input information because they are known only after the cosmetic product is made. Therefore, 

we decided to develop a multi-step prediction process. Using the data of our in-house 

marketed cosmetics, we first created ML models that predict the physical properties of the 

finished product based on information of the ingredients and formulation procedures. Then 

we created ML models that predict tactile sensations of the finished product based on 

physical property information. Finally, we developed an AI system equipped with those ML 

models and some formulators evaluated whether the AI was effective for improvement of 

their “design skill”. 

 

Materials and Methods 

Overview 

The following is an overview of the AI development for cosmetics (Figure 1). Step1: Data 

containing features and objective values was generated by collecting and/or measuring 

information on formulation, physical properties, and tactile sensation scores of the target 

formulation. In data pre-processing, we removed several features that were unnecessary to 

predict objective values (e.g., physical properties and tactile sensations). Step 2: We 

performed feature selection analyses on the pre-processed data to select useful features to 

predict objective values. For data augmentation of training data, we used a state-of-the-art 

generative model to generate synthetic datasets that preserve characteristics of original real 

datasets. By using the resultant training datasets, we trained machine learning (ML) models 

to predict objective values with cross validation. Then, we selected the best ML models for 

each physical property and tactile sensation. Step 3: Finally, we designed and implemented 

an AI system that can execute the ML models on a local PC and be used by formulators. 

Specific details of the implementation are described below. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Flowchart of AI development 

 

Step 1. Data preparation 

We collected 145 in-house marketed skincare products such as toners, milky lotions, creams, 

and gels. Information on formulation was collected from our database. Details of the 

information on formulation are described below. 

- Ingredients: Information on the ingredients contained in each formulation. 

- Formulation Properties: Information on the phase state of the formulation (oil-in-water, 

water-in-oil, etc.). 

- Creation process of formulation: Information such as temperature and stirring conditions 

during emulsification. 

- Physical Properties: Physical properties that are commonly used for cosmetic evaluation 

were obtained. We obtained data for 9 types of physical properties such as pH, specific 

gravity, viscosity at shear rate of 100 s-1, thermal conductivity, coefficient of friction when 

applied on artificial leather, peel force, residue on drying, and contact angle. In this step 



some characteristics of the formulation made it impossible to measure specific physical 

properties (e.g., pH cannot be measured in the water-in-oil formulation). Hence, such cases 

were excluded from the acquisition and therefore not included in the training data. 

- Tactile Sensations: To build a ML model, a large amount of tactile sensation data that can 

be compared between multiple cosmetic formulations was needed. Data on the strength of 

18 commonly used tactile sensation descriptors was obtained using the Check All that 

Apply (CATA) Method, which does not require training and can be done in a short time [7, 

8]. The 18 tactile sensation descriptors are as follows: slippery; sticky; thick; moist; soft; 

hard; warm; cold; rough; smooth; wearability; spreadable; becomes firm; light; watery; 

absorbable; coating; and oily. In the tactile sensation data, since few formulations were 

recognized as "rough" or "warm" and most of the formulations had those at an intensity of 

0, we used the numerical data for these items as a binary value 0 or 1. 

 

Step 2. ML model screening  

Preprocessing 

For numerical features (e.g., the ingredient information), we used the blending ratio of each 

ingredient (%). For categorical data including creation process information (e.g., blending 

type), we used one-hot vector encoding to represent the features of the categorical data. For 

example, for a formulation with a blending type, the value of the binary variable of the 

formulation is equal to 1 while that for a formulation without the blending type is equal to 0. 

Then, in processing of the data, ingredients that were not considered to affect the physical 

properties such as fragrances and extracts in terms of blending ratio or application, were 

removed from the formulation information. In addition, since ingredient distributions were 

different between aqueous formulation (toners or gels) and emulsion formulation (milky 

lotions or creams), we built two different ML models for the two different types of 

formulations. 

Feature selection 

We selected useful features for prediction of physical properties, based on statistical and 

network analyses of training data. First, the correlation coefficients between feature 

candidates and physical properties were calculated. Then, we performed network analysis 

with the Maximum Spanning Tree Algorithm [9] to investigate the relationship between 



features and physical properties. Finally, we calculated feature weights for each feature by 

using the Relief algorithm [10]. The total feature importance was determined by considering 

the outputs from these three analyses. We selected top 10 or 20 features with highest feature 

importance.  

In addition, we calculated variable inflation factor (VIF), which indicates the influence of 

multicollinearity, of each feature to remove features with multicollinearity, i.e., we removed 

features with the value of VIF greater than a given threshold value.  

For the tactile sensation prediction, the same procedure as the physical property model was 

used for feature selection. In addition to the feature selection, to examine the impact of 

formulation information on prediction accuracy, we considered the following three methods 

for building the tactile sensation models. Method A was to train a prediction model using 

only physical properties as feature values. Method B was to train a prediction model after 

feature selection for physical properties and formulation information. For Method C only the 

feature selection of formulation information was performed, and then a ML model was 

trained by using the selected features and all physical property values. 

Data generation 

The amount of data was not large enough to train models with high accuracy, because it was 

difficult to measure the physical properties of many cosmetics in a short period of time. In 

order to address this issue, we took three computational approaches. (i) We used a state-of-

the-art data generation algorithm, tabular-data generative adversarial network (TGAN) [11], 

to generate synthetic data from a small amount of measured data, and used the synthetic data 

together with real training data to train ML models. (ii) In order to train ML models, we used 

semi-supervised learning (SSL) algorithms, i.e., SSL algorithms increase the amount of 

training data, by assigning labels (e.g., physical property values) for unlabeled data (e.g., 

formulation data of in-house cosmetics for which physical property values were not 

measured) by using pre-trained ML models. (iii) Synthetic Minority Over-sampling 

Technique (SMOTE) [12] was applied for oversampling training data with binary objective 

values (e.g., “rough” and “warm”). 

Modeling 

We used a state-of-the-art machine learning algorithm, XGBoost, to train prediction models. 

The XGBoost is based on a gradient tree boosting algorithm that trains and updates a large 



number of weak learners in boosting steps and builds a strong learner that integrates them as 

an ensemble learner [13]. 

We built the ML models to predict each physical property, based on the XGBoost 

algorithm and features selected by using feature selection methods (see “Feature selection” 

for details). We also built the ML models with the SSL algorithms or synthetic data generated 

by TGAN (see “Data generation” for details). 

We also used the XGBoost algorithm to build ML models for tactile sensation prediction. 

Since it was assumed that the prediction accuracy could be improved by considering the 

interaction between tactile sensations, we used a “Multivariate Prediction [14]” approach, 

which uses the predicted tactile sensation score as feature to predict other tactile sensations. 

Since the values of tactile sensations, “rough” and “warm”, were binary values (e.g., 0 or 

1), we built binary classification models based on XGBoost to predict the tactile sensations. 

Validation 

We performed 5-fold cross validation (CV5), with 80% of the data being training data and 

20% of the data being test data, to evaluate predictive performances of the ML models. In 

the evaluation processes, the small amount of data may induce bias in the distribution of the 

training data and the validation data, resulting in inappropriate performance evaluation. In 

order to address this issue, we used K-means to equally divide formulations in each cluster 

into the 5-fold datasets. On the other hand, leave-one-out cross validation (LOO) was also 

performed to evaluate the ML models to compare the results of CV5. 

We used two evaluation metrics, Normalized Root Mean Square Error (NRMSE) and R2 

score to evaluate predictive performances of the ML models. Since the values of NRMSE 

are strongly influenced by outliers and may not correlate with intuitive prediction accuracy, 

we evaluated the ML models based on both of NRMSE and R2 scores, though NRMSE is a 

standard statistical measure to evaluate predictive performance of regression models. We 

used Cohen’s Kappa coefficient that represents reproducibility as an evaluation metric for 

binary classification model. Furthermore, we evaluated the validity of the predictions for the 

training and validation data based on observed-predicted plots. In the observed-predicted 

plots, horizontal and vertical axis denotes the observed and predicted value, respectively. If 

there are a larger number of plots near the diagonal, the prediction is thought to be highly 

accurate and versatile. 



Step 3. System design and evaluation 

Combining the in-house database and created ML models, we designed an AI system. The 

system pipeline consisted of extracting features from the input formulation information, 

executing the calculation of the physical property ML models, and then further executing the 

calculation of the tactile sensation ML models to output the final prediction results. We also 

evaluated the effectiveness of the AI by having formulators (n=4) use the AI in their 

development work for about 3 months. Then we conducted questionnaire to ask the 

formulators the effect of the AI for “design skill” and efficiency of formulation design. 

 

Results 

Physical property ML model evaluation 

We evaluated predictive performance of the ML models. Table 1 shows the values of 

NRMSE and those of R2 for the best ML models to predict physical property. For each 

physical property, the best ML models show high predictive performance, i.e., the value of 

NRMSE and that of R2 for the best ML models are less than 0.250 and greater than 0.600, 

respectively. 

Type Objective NRMSE R2 Conditions 
Aqueous Contact angle 0.059  0.863  XGBoost, VIF, LOO 
 Peel force 0.584  0.635  SSL, VIF 
 pH 0.038  0.866  XGBoost, Top20, CV5 
 Residue 0.099  0.773  XGBoost, Top20, LOO 
 Sheer stress 0.609  0.876  SSL, VIF 
 Specific gravity 0.007  0.819  XGBoost, Top10, CV5 
 Thermal conductivity 0.018  0.845  XGBoost, Top20, LOO 
  Viscosity 0.592  0.627  SSL, VIF 
Emulsion Contact angle 0.059  0.863  XGBoost, VIF, LOO 
 Peel force 0.129  0.836  XGBoost, Top10, CV5 
 pH 0.055  0.516  XGBoost, Top20, CV5 
 Residue 0.098  0.960  XGBoost, VIF, CV5 
 Sheer stress 0.044  0.935  SSL, VIF 
 Specific gravity 0.014  0.623  XGBoost, VIF, CV5 
 Thermal conductivity 0.230  0.950  SSL, Top20 
 Coefficient of friction 0.075  0.511  XGBoost, VIF, CV5 
  Viscosity 0.513  0.721  SSL, Top20 

Table 1 Prediction accuracy of each physical property ML model 
Type: Aqueous indicates the models trained with the data of aqueous formulation (toners and gels). 
Type: Emulsion indicates the models trained with the data of emulsion formulation (milky lotions 
and creams). Conditions represent the used algorithm, feature selection and validation method. 



 Furthermore, as shown in an observed-predicted plot for a representative physical 

property (Residue) in Figure 2, the measured and predicted values for each formulation are 

similar to each other and the plots are aligned diagonally. These results indicate that the best 

ML models are versatile models to accurately predit various physical properties of cosmetic 

formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tactile sensation ML model evaluation  

For each tactile sensation, the best ML models show high predictive performance (see Table 

2), i.e., the values of Kappa score for warm and rough are 1.000, while the values of NRMSE 

and those of R2 for the other tactile sensation are less than 0.250 and greater than 0.600, 

respectively. Furthermore, as shown in an observed-predicted plot for a representative tactile 

sensation, “moist”, in Figure 3, the measured and predicted values for each formulation are 

similar to each other and the plots are aligned diagonally. These results indicate that these 

best ML models listed in Table 2 are also versatile to accurately predict various tactile 

sensations (except “becomes firm” of emulsion and see “Discussion” about this result).  
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Figure 2 Observed-predicted plot for residue ML model of emulsion formulation 
The blue and orage plots represent the results for the training data and those for the validation 
data, respectively. 
 



 

 

 

 

Type Objective NRMSE R2 Kappa Conditions 
Aqueous Hard 0.579  0.781   Multivariate, Method C 
 Slippery 0.283  0.910   XGBoost, Method B, CV5 
 Moist 0.142  0.775   XGBoost, Method C, CV5 
 Thick 0.181  0.892   XGBoost, Method A, LOO 
 Wearability 0.168  0.431   XGBoost with TGAN, Method C, LOO 
 Smooth 0.143  0.595   Multivariate, Method B 
 Spreadable 0.124  0.795   XGBoost, Method B, LOO 
 Becomes firm 0.276  0.743   XGBoost, Method A, LOO 
 Light 0.204  0.628   Multivariate, Method C 
 Sticky 0.381  0.797   XGBoost, Method C, CV5 
 Watery 0.237  0.848   XGBoost, Method C, CV5 
 Soft 0.250  0.560   XGBoost, Method C, CV5 
 Cold 0.257  0.640   XGBoost, Method C, LOO 
 Absorbable 0.237  0.614   XGBoost, Method A, CV5 
 Coating 0.245  0.670   Multivariate, Method C 
 Oily 0.253  0.862   Multivariate, Method B 
 Rough   1.000  XGBoost with SMOTE, Method B, CV3 
  Warm     1.000  XGBoost with SMOTE, Method B, CV3 
Emulsion Hard 0.531  0.720   Multivariate, Method B 
 Slippery 0.218  0.674   XGBoost, Method B, CV5 
 Moist 0.094  0.498   XGBoost, Method A, LOO 
 Thick 0.325  0.604   Multivariate, Method B 
 Wearability 0.078  0.609   XGBoost, Method C, LOO 
 Smooth 0.164  0.408   Multivariate, Method B 
 Spreadable 0.150  0.401   Multivariate, Method B 
 Becomes firm 0.424  0.389   XGBoost, Method B, CV5 
 Light 0.247  0.414   XGBoost, Method C, CV5 
 Sticky 0.352  0.743   Multivariate, Method B 
 Watery 0.269  0.703   Multivariate, Method B 
 Soft 0.133  0.646   XGBoost, Method A, CV5 
 Cold 0.328  0.672   Multivariate, Method B 
 Absorbable 0.164  0.601   Multivariate, Method B 
 Coating 0.280  0.737   Multivariate, Method B 
 Oily 0.318  0.766   XGBoost, Method B, CV5 
 Rough   1.000  XGBoost, Method A, CV3 
  Warm     1.000  XGBoost, Method C, CV3 

Table 2 Prediction accuracy of each tactile sensation ML models 
Type: Aqueous indicates the models trained with the data of aqueous formulation (toners and 
gels). Type: Emulsion indicates the models trained with the data of emulsion formulation 
(milky lotions and creams). Conditions represent the used algorithm, feature selection and 
validation method. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI system design and evaluation 

By combining the created ML models and formulation database, we constructed a system 

that displays the prediction results: physical properties; tactile sensations; and the feature 

information that contributes to physical properties and tactile sensations (Figure 4). In 

addition, according to the data, it is possible to identify similar formulations as reference 

information, and to check the ingredients used in the formulation. The system requires only 

formulation and creation process information as input, and automatically executes the ML 

models internally.  

Then the AI was used by several formulators (n=4). After about three months of AI trials, 

we conducted questionnaire and obtained some answers from formulators as shown in Table 

3. All the formulators agreed or partly agreed on the effectiveness of the AI.  
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Figure 3 Observed-predicted plot for “moist” ML model of aqueous formulation 
The blue and orage plots represent the results for the training data and those for the validation 
data, respectively. 
 



 

 

 

Questionnaire Response Number Comments 

Did you gain any 
insights from using 
the AI and the 
data? 

Agree 1 - I learned about new ingredients that affect tactile sensation and was 
able to use them effectively to create a new formulation. 

Partly 
agree 3 

- The AI can be used to provide guidance to junior formulator that does 
not rely solely on my experience. 
- The tactile sensation data was useful for choosing base formulations. 
- For the beginning of formulation design, the AI was useful for learning 
the effect of ingredients on formulation qualities. 

Disagree 0 None 

Did the AI make 
your formulation 
design more 
efficient? 

Agree 2 

- By entering candidate formulations, tactile sensation can be predicted 
and formulation strategies can be developed efficiently. 
 - Preliminary simulation helped to decrease the number of formulations 
to be made. 

Partly 
agree 2 

- Physical property prediction was useful for formulation design. 
- The AI and the data can be useful, but only for the initial formulation 
design. 

Disagree 0 None 

Figure 4 Output screen of developed AI 

Table 3 Responses of questionnaire from formulators 

 



Discussion 

Marketed cosmetic products contain not only base ingredients but also multiple ingredients 

such as extracts and additives for quality control. When using information on these 

formulations for modeling, it is important to correctly identify the features that are effective 

for prediction of physical properties and tactile sensations. Otherwise, the accuracy of the 

created ML model would be likely low. In fact, through the model screening, it was 

confirmed that additives such as extracts that are included only in formulations that have 

characteristic physical properties were used as important features by the created model. 

Additionally, it led to decreasing the accuracy of the ML model. Therefore, it is effective for 

feature candidates that are included as appealing ingredients in a particular formulation to be 

considered as noise and removed in advance. 

In addition, the ingredients used in aqueous formulation (toners, gels) and emulsion 

formulation (milky lotions, creams,) were very different, and the number of features 

contributing to the physical properties was also different. Therefore, if the information on 

these formulations was used as training data without separating it, the feature values that 

contribute to the physical properties could not be correctly learned, and prediction accuracy 

of the ML model tended to be low. It is considered effective to carefully examine the features 

that contribute to the physical properties for each cosmetic formulation and create a ML 

model as a separate data set based on these features.  

For physical property prediction, the appropriate feature selection method differed 

depending on the physical properties to be predicted, and it was necessary to combine each 

method appropriately. In addition, when the data range of actual measured values was 

unevenly distributed, the prediction accuracy for a particular physical property range likely 

become low. Hence it is effective to add training data with a well distributed data range. In 

this study, we applied TGAN or SSL as data generation methods. In fact, prediction accuracy 

was better when using SSL as the data generation method than TGAN. This result suggests 

that this is because SSL more easily generates data that is closer to the actual data, and thus 

more useful information for training can be obtained. 

As a result of ML model creation for tactile sensation prediction, the prediction accuracy 

was improved by adding the physical property values as features. Therefore, it was found 

that using physical property values as features is effective for the prediction of the tactile 



sensation. On the other hand, some tactile sensation descriptors with low prediction accuracy 

were found even when the physical property values were included as features. This is because 

the number of physical property values that can be obtained is limited, and not all physical 

characteristics that affect tactile sensation can be measured. On the other hand, some research 

has shown that there is a relationship between tactile sensation descriptors [15, 16]. Therefore, 

we used Multivariate Prediction, in which one predicted tactile sensation score is used as the 

feature to predict other tactile sensation score. This method is based on the assumption that 

the effect of the lack of features is greater than the effect of multicollinearity, although the 

use of predicted values for the prediction of other tactile sensation may increase the effect of 

multicollinearity. In fact, this method improved the prediction accuracy for some of the tactile 

sensations and was able to predict the tactile sensations with sufficient accuracy. This 

suggests that taking into account the interaction between tactile sensations in the prediction 

is a key point for accurate prediction.  

On the other hand, prediction accuracy of the ML model of “becomes firm” for emulsion 

formulation was not so high. Although several methods were applied, the ML models of 

“becomes firm” tended to be overfitting and the prediction accuracy for test data became low. 

Since especially the prediction for specific formulations was not accurate, to analyze the 

characteristic of those formulations and add actual data on the similar formulations would be 

effective for improving the prediction accuracy. Further data collection is being conducted. 

In this study, the ML models were created using data on in-house cosmetics for which the 

ingredients and creation processes are known. Although we did our best to remove the 

features that would become noise in the prediction, we cannot deny that there are cases in 

which predictions are made with reference to ingredient characteristics unique to the in-house 

cosmetics. However, we believe that the modeling process can be widely used, as we were 

able to construct valid ML models for a wide variety of cosmetics. Thus, using formulation 

data of marketed products, it should be possible to create other models with effective 

prediction.  

The created AI automatically executes the ML models by simply entering formulation 

information. Although multiple ML models need to be run, it takes only a few minutes to 

output the prediction results. In fact, some formulators who used the AI said that they were 

able to generate multiple prototypes in a short period of time and were able to design their 



desired cosmetics quickly. Especially for less-experienced formulators, the AI was useful to 

know the important ingredients for controlling tactile sensation intensity. On the other hand, 

experienced formulators suggested that more prediction accuracy for detailed tactile 

sensation design would be helpful. In addition, it would be helpful to predict other cosmetics 

qualities, such as stability and safety. Further investigation based on these opinions is 

currently being conducted for improved assistance of formulators by the AI. 

 

Conclusion 

In this study, we proposed a training cycle with an AI for formulators to efficiently acquire 

the necessary skills for formulation design. We built the AI contained the ML models that 

predict physical properties and tactile sensation from formulation data. In order to accurately 

predict the physical properties and tactile sensations from the formulation information, it was 

important to analyze data by distinguishing between aqueous formulations and emulsions, to 

extract essential features by analyzing a large number of features, and to increase the amount 

of pseudo data. Especially for the tactile sensation, it was important to include predicted 

values as features in order to take into account the influence of tactile sensations on each 

other. Our research also reveals that the AI is helpful for formulators to expand their abilities 

through numerous hypothesis construction and verification. Information provided by the AI 

is also useful to inspire them. The AI is currently being used for developing a wide range of 

products and is in the process of being expanded to further improve accuracy and predict 

other cosmetic qualities by adding data. In the future, we aim at widening the application of 

the AI to other aspects of cosmetics development as well, such as in the DIY cosmetics setting 

to assist customers in designing their own products. By expanding the limits of human skills 

with AI, cosmetic chemists should be able to develop innovative and revolutionary 

formulations and give cosmetics possibilities of new functions and uses. 
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