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Abstract (Maximum of 250 words) 

Inspired by an analogy between the application process of cosmetics and large amplitude oscillatory 

shear (LAOS), we suggest a novel predictive model for the spreadability of cosmetic formulations 

via LAOS analysis and machine learning techniques. Rheological measurements of cosmetics 

formulations including the transient elastic and viscous modulus from the sequence of physical 

process (SPP) analysis are selected as features for the predictive models, and the spreadability of each 

formulation, which is quantitatively rated by trained panels, is set up as the target variable. Firstly, 

multiple linear regression prediction models are derived, and it is shown that the LAOS-SPP 

parameters are more effective feature than other rheological parameters that have been conventionally 

related to spreadability of cosmetics. Additionally, non-linear prediction model is built based on the 

random forest regressor algorithm with consideration for the possibility of the nonlinear correlation 

between rheological measurements and spreadability. Random forest regressor model shows better 

performance than linear regression model, and the LAOS-SPP parameters are found to be more 

effective features for random forest regressor model as in the multiple linear regression model. 

Correlation between the LAOS-SPP parameters and the spreadability is interpreted in terms of 

rheological transition during rubbing process of cosmetics. Our findings indicate the importance of 

the nonlinear rheological behavior in texture perception mechanism of cosmetics, and how 

rheological measurements can be combined with machine learning techniques to solve a complicated 

question.   

Keywords: Spreadability; LAOS; SPP analysis; Multiple linear regression; Random 
forest regression 



Introduction 

 The textural properties are important factors that affects consumer satisfaction on a cosmetic 

formulation. The most common and direct approach that has been employed to investigate the texture 

of cosmetics is the panel test, such as Quantitative Descriptive Analysis (QDA) and the Spectrum 

Descriptive Analysis (SDA) methods. While these panel test-based sensory evaluation methods have 

served as descent tools for analyzing the texture of cosmetics, they are time-consuming, expensive, 

laborious and easily influenced by irrelevant factors, which has limited their use. As an alternative to 

the panel-based approach, there have been several attempts to correlate the texture of cosmetics to 

instrumental measurements that are economical and objective. The skin feeling is a direct outcome 

of the cosmetic’s stress response against flow and deformation, hence the texture of cosmetics has 

been most linked to the rheological properties.  

Spreadability is one of the most important sensory attributes that determines the feeling of cosmetics, 

as it is a main texture felt under rubbing process which occupies largest time in cosmetics use. There 

have been many attempts to understand the spreadability in terms of rheology, however, most of them 

end in just reporting simple correlations between spreadability and rheological properties. In a recent 

study on sensory properties of cosmetic formulations, correlation between various rheological 

parameters and spreadability is investigated with the principal component analysis [1]. Although 

rheological properties that are related to spreadability are identified, quantitative relationship between 

them is not suggested. In some research, quantitative prediction models for spreadability are 

suggested as functions of the work of friction and viscosity [2]. Such predictive models show decent 

predictive performance, however, there still exists something to be desired. Rheological parameters 

selected as feature of prediction model are too simple to effectively represent the complex rheological 

transitions of cosmetics during rubbing process. Another problem is that sample size is rather 

insufficient. Even though spreadability is well predicted with high coefficient of determination (𝑅ଶ 

or 𝑅௔ௗ௝௨௦௧௘ௗ
ଶ ) over 0.9 in previous studies, less than 20 samples are examined, which is insufficient 

to ensure performance of the predictive model. Moreover, small sample set cannot represent wide 

range of cosmetics with diverse rheological properties, and consequently restricts model’s operation 

range. Another potential problem lies in prediction model construction. Previous studies have 

developed predictive models under the assumption of linear, or semi-logarithmic or logarithmic 

relationship between spreadability and rheological properties, which follows common assumption in 

psychophysics. Even though such assumptions have shown to work effectively in the studies on 

olfaction and food texture, it is still doubtful that complex relationship between rheological properties 

and spreadability, which might be nonlinear, can be effectively captured by the empirical simple 



regression model. Additionally, impact of the prediction model is dulled by the lack of elaborated 

rheological interpretation. 

 In this study, we aim to establish an effective predictive model for the spreadability of cosmetics 

formulations with rheological measurements. First step of prediction model establishment is 

gathering material information so called feature or descriptor for prediction model, which is one of 

the keys to build an accurate prediction model. Although there is no universal rule for choosing 

descriptors, a good set of features should be physically meaningful and remain as low dimensional as 

possible. Cosmetics go through a variety of rheological transitions according to the flow conditions 

during the application procedure on the skin, which determines the texture experienced by consumers. 

Therefore, a feature set should include rheological parameters that effectively reflect flow condition 

of actual cosmetics application process and resulted rheological transition. Considering an analogy 

between the rubbing and Large Amplitude Oscillatory Shear (LAOS), both of which are repeated 

application of large deformation, we select rheological parameters from the LAOS analysis as feature 

for prediction model, impact of which is compared to that of conventional rheological parameters 

such as elastic modulus and viscous modulus. While textural properties of cosmetics formulation 

have been studied with LAOS analysis [3,4] in a few studies, this study distinguishes itself with 

introduction of the Sequence of the Physical Process (SPP) technique that can provide temporally 

resolved information on the intra-cycle rheological transition. 

Using two separate machine learning algorithms of the multiple linear regression and the decision 

tree regressor, prediction model is trained with 77 datasets of cosmetic formulations which is the 

largest in spreadability study of cosmetic formulations to best of our knowledge. Each dataset 

contains rheological measurements and the spreadability. Here, the spreadability is quantitatively 

rated by 10 professionally trained panels and set as target variable. Rheological measurements are 

divided into two groups and used as features for the prediction model. The LAOS-SPP parameters 

comprise one feature set, while linear rheological parameters and shear stress at high shear rate 

comprise the other feature set. Firstly, multiple linear regression models for the two different feature 

sets are developed with all possible combination of features, performance of which are evaluated by 

Root Mean Squared Error (RMSE). Additionally, feature importance is analyzed. We conduct same 

analysis with decision tree regressor and compare result to multiple linear regression model case. It 

is shown that the LAOS-SPP parameters are more effective feature for prediction of the spreadability, 

and the decision tree regressor that can consider nonlinear correlation between rheological 

measurements and the spreadability provides more accurate prediction. Moreover, importance of each 

feature is discussed in rheological perspective. 



Materials and Methods 

1) Materials 

Ingredients 
Type of Formulation 

Solubilization Emulsification 
Polyol (wt%) 1~10 10~20 20~ 2~37 

Oil (wt%) ~1 ~1 ~1 0~15 

Silicone (wt%) 0~1 0~0.5 0~10 0~33 

Thickener (wt%) 0~0.85 0.04~1.93 0~0.8 0~1.6 

Emulsifier (wt%) - - - 0~3.5 

Water (wt%) 60~93 57~85 33~75 27~82 

Number of samples 15 21 18 22 

Table 1. Ingredient information of cosmetic formulations. 

77 cosmetic formulations from Cosmax Inc. were selected to study the correlation between their 

sensory attributes and rheological measurements. These include Solubilization type, Emulsification 

type formulations, as shown in table 1, that can give various skin sensations. The basic ingredients of 

those formulations were water, polyol, oil, silicone, emulsifier and thickener. Polyols and type of 

emulsion may play a significant role in determining the sensory characteristics of cosmetic 

formulations. All formulations were made using routine laboratory equipment such as agitator and 

homogenizer. 

 

2) Spreadability evaluation 

 Highly trained ten panelists aged 25 to 37 years old were participated in the evaluation. For the panel 

training, QDA (Quantitative Descriptive Analysis) method was applied, and the evaluation was 

conducted in a room with controlled temperature and relative humidity and adequate light conditions 

according to ISO guideline (ISO 8589:2007). All testing samples were blinded with a random three-

digit code and Latin square design was carried out for evaluation to avoid bias (panel effect and order 

effect). As previously introduced, our study focuses on the sensory “Spreadability”. Spreadability is 

defined as “Percepted degree (Amount) of the spread strength or the spread area within the test spot 

while the sample cover over the skin”. Spreadability was evaluated by panelists using micro pipette 

(Gilson MICROMAN M100E, France), deliver 50 μm of sample on inner forearm. Gently spread 

product using an index or middle finger, within a circle with 5 cm diameter, at a rate of 120 BPM 

(beats per minute) while 1 to 10 rubs, and rated from 0 to 150 (line scale) against the references 

samples. 

 



3) Rheological measurements 

 All rheological measurements were performed using a HR-20 (TA instruments, USA) with 40mm 

cross-hatched geometry to prevent wall slip during the test. Temperature was maintained as 32℃ 

which corresponds to hand skin temperature in a room at 15-20℃. After sample loading, all samples 

were pre-sheared with large amplitude oscillatory shearing of strain amplitude 𝛾଴ = 10  and 

frequency 𝜔 = 1 𝑟𝑎𝑑/𝑠𝑒𝑐 for 120 sec followed by 600 sec of rest time, ensuring that samples are in 

a consistent beginning condition.  

The linear viscoelastic moduli (𝐺ᇱ,𝐺ᇱᇱ) and their ratio (𝑡𝑎𝑛(𝛿)), which compose the conventional 

rheological feature set, were measured with oscillatory shearing of strain amplitude 𝛾଴ = 0.01 and 

frequency 𝜔 = 1 𝑟𝑎𝑑/𝑠𝑒𝑐. Another component of the conventional rheological feature set, 𝜎ଵ଴଴ షభ 

was defined as shear stress measured under steady shear of shear rate 𝛾̇ = 100 sec. For the feature 

set of the LAOS-SPP analysis, large amplitude oscillatory shearing of strain amplitude 𝛾଴ = 10 and 

frequency 𝜔 = 1 𝑟𝑎𝑑/𝑠𝑒𝑐 was employed. The stress response from the first 15 oscillation cycles 

were eliminated, and the stress response after that was examined to secure the steady oscillatory state, 

also known as the alternating state. The SPP analysis necessitates mathematically continuous and 

smooth stress response as it uses the first and second derivatives of the stress response. Therefore, 

stress responses are averaged over 16 different oscillation cycles and smoothed with the locally 

estimated scatterplot smoothing (LOESS) technique. 

 

4) Sequence of the Physical Processes (SPP) analysis and feature selection 

 

Figure 1. Description of stress response as a trajectory in three-dimensional space.  

Stress response of each cosmetics formulation in LAOS is quantitively analyzed by the SPP 

techniques, results from which form a set of features for the prediction model. As details are available 

in many previous studies [5,6], we give a brief account of the SPP analysis. In the SPP analysis, stress 



response from the cosmetics is regarded as a function of strain and strain rate, 𝜎(𝛾, 𝛾̇/𝜔). Rheological 

transition under oscillatory shear strain is represented by a trajectory in a three-dimensional space 

(ℝଷ) that consists of strain (𝛾)-strain rate (𝛾̇/𝜔)-stress (𝜎) axes as demonstrated in Fig.2. Thus, 

rheological state at a certain state is denoted by a point P on the trajectory that has a position vector 

𝑷ሬሬ⃗ (𝑡) = (𝛾(𝑡), 𝛾̇(𝑡)/𝜔, 𝜎(𝑡)) . At each point 𝑷ሬሬ⃗ (𝑡) , the Frenet-Serret frame (tangent vector 𝑻ሬሬ⃗ (𝑡) , 

normal vector 𝑵ሬሬ⃗ (𝑡), and binormal vector 𝑩ሬሬ⃗ (𝑡)) is defined as follows 

𝑻ሬሬ⃗ (𝑡) =
𝑷ሬሬ⃗ ′(𝑡)

ห𝑷ሬሬ⃗ ′(𝑡)ห
, 𝑵ሬሬ⃗ (𝑡) =

𝑻ሬሬ⃗ ′(𝑡)

ห𝑻ሬሬ⃗ ′(𝑡)ห
, 𝑩ሬሬ⃗ (𝑡) = 𝑻ሬሬ⃗ (𝑡) × 𝑵ሬሬ⃗ (𝑡) (1) 

where 𝑷ሬሬ⃗ ′(𝑡) and  𝑻ሬሬ⃗ ′(𝑡) are time derivative of 𝑷ሬሬ⃗ (𝑡) and 𝑻ሬሬ⃗ (𝑡). The tangent (𝑻ሬሬ⃗ ) vector and normal (𝑵ሬሬ⃗ ) 

vector span a plane that is tangent to the trajectory at a point 𝑷ሬሬ⃗ (𝑡). Such plane is referred to as 

osculating plane that is normal to 𝑩ሬሬ⃗ . The osculating plane at an arbitrary 𝑷ሬሬ⃗ (𝑡∗) is  

 𝑩ሬሬ⃗ (𝑡∗) ∙ ቀ𝑷ሬሬ⃗ (𝑡) − 𝑷ሬሬ⃗ (𝑡∗)ቁ = 0 or (2) 

𝐵𝜸(𝑡∗)൫𝛾(𝑡) − 𝛾(𝑡∗)൯ + 𝐵 ఊ̇
ఠ

(𝑡∗) ቆ
𝛾̇(𝑡)

𝜔
−

𝛾̇(𝑡∗)

𝜔
ቇ + 𝐵ఙ(𝑡∗)൫𝜎(𝑡) − 𝜎(𝑡∗)൯ = 0 (3) 

With ∆𝑡 → 0, three consecutive points 𝑷ሬሬ⃗ (𝑡∗ − ∆𝑡), 𝑷ሬሬ⃗ (𝑡∗), 𝑷ሬሬ⃗ (𝑡∗ + ∆𝑡) sit within the osculating plane, 

and Eq.(2) can be written in the form of a differential change 

𝐵𝜸(𝑡∗)൫𝛾(𝑡∗ ± ∆𝑡) − 𝛾(𝑡∗)൯ + 𝐵 ఊ̇
ఠ

(𝑡∗) ቆ
𝛾̇(𝑡∗ ± ∆𝑡)

𝜔
−

𝛾̇(𝑡∗)

𝜔
ቇ

+ 𝐵ఙ(𝑡∗)൫𝜎(𝑡∗ ± ∆𝑡) − 𝜎(𝑡∗)൯ = 𝐵𝜸(𝑡∗)𝑑𝛾 + 𝐵 ఊ̇
ఠ

(𝑡∗)𝑑 ൬
𝛾̇

𝜔
൰ + 𝐵ఙ(𝑡∗)𝑑𝜎

= 0 

(4) 

Eq.(4) can be rewritten in terms of 𝑑𝜎 

𝑑𝜎 = −
𝐵𝜸(𝑡∗)

𝐵ఙ(𝑡∗)
𝑑𝛾 −

𝐵 ఊ̇
ఠ

(𝑡∗)

𝐵ఙ(𝑡∗)
𝑑 ൬

𝛾̇

𝜔
൰, (5) 

and compared to the total derivative of stress 𝜎(𝛾, 𝛾̇/𝜔) 

𝑑𝜎 =
𝜕𝜎

𝜕𝛾
𝑑𝛾 +

𝜕𝜎

𝜕 ቀ
𝛾̇
𝜔ቁ

𝑑 ൬
𝛾̇

𝜔
൰. (6) 



−
஻𝜸(௧∗)

஻഑(௧∗)
 and −

஻ ം̇
ഘ

(௧∗)

஻഑(௧∗)
 are equivalent to 

డఙ

డఊ
 and 

డఙ

డቀ
ം̇

ഘ
ቁ
 that are referred to as transient elastic modulus 

𝐺௧
ᇱ(𝑡)  and transient viscous modulus 𝐺௧

ᇱᇱ(𝑡) . The transient moduli can be considered as time-

dependent analogues of the dynamic moduli (𝐺ᇱ, 𝐺ᇱᇱ), although the transient moduli distinguish itself 

by providing temporally resolved information on the intra-cycle rheological transition. 

 

Figure 2. Feature variable selection inspired by an analogy between LAOS and rubbing 

out process of cosmetics. (a) Elastic Lissajous curve. (b) Cole-Cole plot. (c) Simplified 

rubbing out process corresponding to LAOS, and seven LAOS-SPP parameters defined 

at each point. 

Variable 

Set 

Feature variables Target 

variable Description Feature 

LAOS-SPP 

Recovered structure 𝐺௧,௠௔௫
ᇱ , 𝐺௧,ீ೟,೘ೌೣ

ᇲ
ᇱᇱ  

Spreadability 
Elastic to viscous transition 𝐺௧,௠௜௡

ᇱ , 𝐺௧,௠௔௫
ᇱᇱ  

Viscoplastic flow 𝐺௧,௠௜௡
ᇱᇱ ,  𝐺

௧,ீ೟,೘೔೙
ᇲᇲ

ᇱ , 𝜎௠௔௫ 

Conventional Linear rheological property 𝐺ᇱ, 𝐺ᇱᇱ, tan(δ) 



parameters Spreading stress 𝜎ଵ଴଴௦షభ 

Table 2. Feature selection for the prediction model 

In the SPP analysis, a rheological state is described by the transient moduli 𝐺௧
ᇱ(𝑡) and 𝐺௧

ᇱᇱ(𝑡), and 

rheological transition is represented by a change in the transient moduli. Typically, the rheological 

transition is interpreted in the transient Cole-Cole plot form whose abscissa and ordinate are given as 

𝐺௧
ᇱ(𝑡) and 𝐺௧

ᇱᇱ(𝑡). Shown in Fig 3 are (a) elastic Lissajous curve and (b) Cole-Cole plot of a cosmetic 

sample studied in this study. It should be noted that all 77 samples have similar the elastic Lissajous 

curve and Cole-Cole plot that do not remarkably deviate from Fig 2(a) and (b). Looking at the 

corresponding trace in the Cole-Cole plot can reveal the rheological transition in a region of interest. 

For example, rheological transition between point 1 and 2 in the elastic Lissajous curve in Fig 3(a) is 

identified as the elastic to viscous transition, because the trace marked with corresponding points 

shows decrease of 𝐺௧
ᇱ(𝑡) and increase of 𝐺௧

ᇱᇱ(𝑡) in the Cole-Cole plot in Fig 2(b).  

An analogy between the LAOS and rubbing-out process of cosmetics served as an insight in 

selecting transient moduli as features for the spreadabilty prediction model. By projecting the LAOS 

onto cosmetics application process, we employ transient moduli at three characteristic points in the 

Cole-Cole plot as features for the prediction model. Generally, the Cole-Cole plot under LAOS has 

deltoid shape due to the dominance of the third harmonic in Fourier spectrum, and the transient 

moduli at three vertices of the deltoid can characterize rheological behavior of cosmetics during 

rubbing out process of cosmetics as shown in Fig2 (c). To begin with, as strain peaks and flow is 

reversed near point 1 (or 4) in Fig 2, the deformation rate approaches zero allowing more time for 

structural relaxation in cosmetics. Point 1 (or 4), where the transient elastic modulus reaches its 

highest (𝐺௧,௠௔௫
ᇱ ), represents the most structure-recovered state during oscillation in rheological 

perspective. In terms of cosmetics application, the transient elastic modulus (𝐺௧,௠௔௫
ᇱ ) and the transient 

viscous modulus (𝐺௧,ீ೟,೘ೌ
ᇲ

ᇱᇱ ) at point 1 (or 4) can be linked to the spreadability of cosmetics perceived 

when a user changes their application direction and cosmetics instantaneously recover their structure. 

Secondly, the minimum transient elastic modulus 𝐺௧,௠௜௡
ᇱ  and the maximum transient viscous modulus 

𝐺௧,௠௔௫
ᇱᇱ  at point 2 (or 5) are utilized to characterize the elastic to viscous transition. As structure 

recovered from point 6 (or 3) to point 1 (or 4) starts to be deformed and ruptured by flow reversal, 

cosmetics undergo elastic to viscous transition from point 1 (or 4) to point 2 (or 5). The minimum 

transient elastic modulus 𝐺௧,௠௜௡
ᇱ  and the maximum transient viscous modulus 𝐺௧,௠௔௫

ᇱᇱ  indicate that the 

elastic to viscous transition occurs most rapidly at point 2 (or 5). The minimum transient elastic 

modulus 𝐺௧,௠௜௡
ᇱ  and the maximum transient viscous modulus 𝐺௧.௠௔௫

ᇱᇱ  are included in feature set as 



rheological parameters to consider the elastic to viscous transition process during cosmetics 

application. After going through the structure recovery and elastic to viscous transition processes 

sequentially, cosmetics flow with the least structured state in the vicinity of point 3 (or 6) where strain 

is almost 0 and strain rate reaches its highest. Here the least structured state is ascribed to large shear 

rate. The transient elastic modulus is near to 0 at point 3 (or 6), while the transient viscous modulus 

𝐺௧
ᇱᇱ is minimum, indicating viscoplastic flow. The minimum 𝐺௧

ᇱᇱ and the transient elastic modulus at 

the same point are defined as 𝐺௧,௠௜௡
ᇱᇱ  and 𝐺

௧,ீ೟,೘೔೙
ᇲᇲ

ᇱ  respectively, and they will be used to characterize 

viscoplastic flow during rubbing out of cosmetics. 𝐺௧,௠௜௡
ᇱᇱ  and 𝐺

௧,ீ೟,೘೔೙
ᇲᇲ

ᇱ  are predicted to have a 

significant influence on the spreadability of cosmetics since viscoplastic flow accounts for the 

majority of the cosmetics application procedure. Additionally, the stress maximum (𝜎௠௔௫) observed 

around point 3 (or 6) is selected as feature for the prediction model according to previous studies that 

reported close correlation between shear stress and spreadability [1]. The LAOS-SPP parameters 

stated above constitute a feature set for the spreadability prediction model, which will be compared 

to another feature set of conventional rheological parameters that has been closely correlated to the 

spreadability. Table 2 summarizes the two feature sets for the spreadability prediction model.  

5) Machine learning algorithms 

A. Multiple linear Regression model 

In this work, prediction models were built with scikit-learn modules of RidgeCV, LASSOCV, and 

ElasticNetCV. Figure 4 shows schematic diagram of multiple linear regression model built in this 

work. For each variable set, we tried every possible combination of variables to find the best feature 

set. For example, 127 (2଻ − 1) combinations of variables were tried in the case of LAOS-SPP set. 

For each feature set, multiple linear regression models in the form  

𝑦ො(𝑖) = 𝛽଴ + 𝛽ଵ𝑥ଵ(𝑖) + 𝛽ଶ𝑥ଶ(𝑖) ⋯ (7) 

are created, where 𝑦ො(𝑖), 𝑥௞(𝑖), 𝛽௞ indicate predicted spreadability of the i-th sample, k-th feature of 

the i-th sample, and regression weight for k-th feature, respectively. Here, 𝑥௞(𝑖) is scaled with min-

max normalization for 1) feature importance analysis and 2) utilization of regularization techniques 

to prevent overfitting problem. Three different regularization methods of Ridge, and Lasso, elastic 

net are introduced, and each regularization method employ regularized loss of the following forms in 

sequence 



෍൫𝑦(𝑖) − 𝑦ො(𝑖)൯
ଶ

௡

௜ୀଵ

+ 𝛼 ෍ 𝛽௝
ଶ

௞

௝ୀଵ

 (8) 

෍൫𝑦(𝑖) − 𝑦ො(𝑖)൯
ଶ

௡

௜ୀଵ

+ 𝛼 ෍ห𝛽௝ห

௞

௝ୀଵ

 (9) 

෍൫𝑦(𝑖) − 𝑦ො(𝑖)൯
ଶ

௡

௜ୀଵ

+ 𝛼𝜆 ෍ห𝛽௝ห

௞

௝ୀଵ

+
𝛼(1 − 𝜆)

2
× ෍ 𝛽௝

ଶ

௞

௝ୀଵ

 
(10) 

where hyper parameters 𝛼  and 𝜆  were optimized with grid search approach. Details on the 

regularized regression are available elsewhere [7]. As we have limited data set, 5-fold cross validation 

technique was adopted to resample and evaluate machine learning models on a limited data sample. 

For each of the 5-folds, the Root Mean Squared Error (RMSE), defined as  

𝑅𝑀𝑆𝐸 = ඩ
1

𝑛
෍൫𝑦(𝑖) − 𝑦ො(𝑖)൯

ଶ
௡

௜ୀଵ

 (11) 

is calculated and their average is utilized as model evaluation metric.  

 

Figure 3. Schematic diagram of multiple linear regression model 

 



B. Random forest 

 

Figure 4. Schematic diagram of random forest regressior model 

While a multiple linear regression model may adequately capture the linear correlation 

between features and spreadability, it cannot account for nonlinea relationships. As an 

alternative, we employ the random forest regressor that is a supervised learning algorithm 

with an ensemble of decision trees.  The random forest regressor operates by constructing a 

multitude of decision trees at training time and outputting the class that is the mode of the 

mean predcition (or regression) of the idividual trees. Random forest regressor model has 

advantage in that it provides accuarate but not overfitted preidction. Details on the random 

forest regressor is given in elsewhere [8]. As in the case multiple linear regression model, 

every possible combination of features are attempted to find the best feature set, and 5-fold 

cross validation technique is used. Herein, maximum depth of trees is restricted between 1 

and 10 to ascertain overfitting possibility. Each of the 5-folds consists of 1000 trees (or 

estimators), and model is evaluated by the RMSE as before. 

 

Results 

1) Multiple linear Regression model 



 Figure 5 shows the three best multiple linear regression models with the conventional 

rheological paramters of 𝐺ᇱ, 𝐺ᇱᇱ, tan(δ) , 𝜎ଵ଴଴௦షభ . The best model with elastic net regularization 

shows RMSE of 11.38. It is remarkable that feature important analysis indicates that 𝜎ଵ଴଴௦షభ is the 

most important rheological property in determining the spreadability.  

 

Figure 5. Spreadability prediction from the multiple linear regression model with 

conventional rheological parameters as features.  

 

Figure 6. Spreadability prediction from the multiple linear regression model with the 

LAOS-SPP parameters as features. 



Figure 6 demonstrates the three best multiple linear regression models with the LAOS-SPP 

paramters. The best model with Ridge regularization shows RMSE of 9.85, which indicates that the 

LAOS-SPP parameter based regression model can give more accurate prediction. Contrary to the 

multiple linear regression model with the conventional rheological parameters where 𝜎ଵ଴଴ షభ  is 

dominantly important feature for spreadability prediction, multiple linear regression model with the 

LAOS-SPP parameters has several important features.  

 

2) Random forest regression model 

 

Figure 7. Spreadability prediction from the random forest regression model with 

conventional rheological parameters as features. 

Shown in Figure 7 is the  spreadability prediction from the random forest regression model 

with features of the convetnional rheological parameters. Compared to the prediction from 

the multiple linear regression model, the best result from the random forest regression model 

shows better performance with RMSE of 9.56, which indicates that there exists nonlinear 

correlation between rheological property and spreadability. It should be noticed that while  

the random forest regression model wih conventional rheological parameters seems to work 

well, maximum depth of the random forest regression model is large with values of 7,8 and 

4. This indicates that there can be a overfitting problem in this model. 



 

Figure 8. Spreadability prediction from the random forest regression model with the 

LAOS-SPP parameters as features. 

 Figure 8 demonstrates results from the random forest regression model with the LAOS-SPP 

parameters as features. This prediction model shows the best performance with the RMSE of 

9.14. Maximum depth of trees in the best 3 model is less than or equal to 4, which means the 

trained model works effectively without overfitting problem. Feature importance analysis 

shows that 𝐺௧,௠௜௡
ᇱᇱ  and 𝜎௠௔௫ play an important role in determining the spreadability. 

 

Discussion. 

 It is shown that the best spreadability prediction model can be established by the combination 

of the random forest regression technique and the LAOS-SPP analysis. This signifies that 

nonlinear rheological behavior of cosmetic formulations is a key factor in determining the 

spreadability. Furthermore, our result emphasizes that the relationship between sensory 

texture (in this work spreadability) and rheological property can be nonlinear. Therefore, it 

seems essential to use nonlinear modeling approach in prediction of the sensory texture. 

 Feature importance analysis result reveals a new remarkable point. In the conventional study, 

shear stress or viscosity were considered to be the most important rheological parameter that 

determines the spreadability, which is well reflected in our study using the multiple linear 

regression model. However, it is shown that the spreadability of cosmetics is demonstrated 



to be closely related to a novel nonlinear rheological parameter 𝐺௧,௠௜௡
ᇱᇱ , which measures the 

degree of the viscous transition during the rubbing out process. 

 

Conclusion. 

Our results demonstrates the importance of the nonlinear rheological behavior in texture 

perception mechanism of cosmetics. Additionally, it is shown that how rheological 

measurements can be combined with machine learning techniques to solve a complicated 

question of sensory texture. 
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