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Abstract 

Progress of aging varies among individuals. Although chronological age is one of the most 

general indexes of aging, it doesn’t always reflect a degree of aging accurately. Recently, the 

concept of “biological age”, estimated by combining comprehensive biological information 

associated with aging and machine learning, has been attracting global attention, because of 

its usefulness in aging research. Therefore, we considered that biological age in the skin 

would precisely reflect the degree of skin aging, which cannot be determined by 

chronological age alone, in addition to providing insights into skin aging. 

Skin Surface Lipid-RNA (SSL-RNA) monitoring, our original technology, enables the 

non-invasive acquisition of comprehensive gene expression profile in the skin. To examine 

whether SSL-RNA profiles associate with skin aging, we extracted genes significantly 

correlated with chronological age and gene ontology analysis was performed. As a result, 

these genes showed consistent changes with previously reported aging-related biological 

functions. Next, we predicted chronological age by machine learning and defined it as 

biological age based on SSL-RNA profile. Then, we examined the association of biological 

age with skin aging. As a result, significant correlation was obtained between skin aging 

conditions and biological age, but not with chronological age. These findings suggest that 

biological age reflects the degree of skin aging more accurately than chronological age. 

We consider that biological age is an innovative index useful for examination of skin aging 

that provides more functional understanding of that factor in individuals in a timely manner 

as well as a personalized cosmetic future plan. 
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1. Introduction.  

Aging is an inevitable process, and its degree of progression and phenotype vary among 

individuals, owing to genetic predispositions and environmental factors. Skin aging is no 

exception, and the effects of ultraviolet radiation can further accelerate and complicate this 

process, leading to wrinkles, hyperpigmentations, and other appearance-impairing 

phenotypes. Chronological age (the number of years since birth) is one of the most common 

indexes of aging, but elapsed time is not always accurate indicator of the degree or phenotype, 

so there can be variations in aging even if among the same chronological age individuals. In 

recent years, the concept of “biological age”, an estimate of the degree of aging progression 

based on the amount of decline in physical functions, has been attracting global attention [1]. 

Biological age has been estimated by combining comprehensive biological information, such 

as DNA methylation and RNA expression, associated with aging, and machine learning 

which is capable of handling “big data” [1,2]. It was hypothesized that by estimating 

biological age in the skin, it would be possible to obtain an index that would precisely reflect 

the degree of skin aging, which cannot be determined by chronological age alone, in addition 

to providing insights into skin aging. 

Our previous studies have found that human mRNA is present in sebum and have termed 

it “skin surface lipid-RNA” (SSL-RNA). In addition, transcriptome analysis technology led 

us to obtain comprehensive gene expression profile in the skin from SSL-RNA, acquired by 

non-invasive method that comprises simply wiping sebum using an oil-blotting film [3]. 

Furthermore, differentially expressed genes involved in pathology between atopic dermatitis 

patients and healthy subjects could be detected in SSL-RNA [3], and gene expression 

changes were detected to be consistent with physical changes associated with circadian 

rhythms and menstrual cycles, suggesting that SSL-RNA reflects various skin and body 

conditions.  

In the present study, whether SSL-RNA reflects age-related changes was first examined. 

In addition, to understand the personal skin aging, chronological age was predicted by 

combination SSL-RNA profiles and machine learning, and whether the predicted age was a 

reasonable value related to skin aging, as a biological age based on SSL-RNA, was examined. 

Furthermore, whether biological age based on SSL-RNA can identify individual differences 

in skin aging that cannot be detected by chronological age alone was determined. 



2. Materials and Methods.  

 

2-1. Subjects 

A clinical study was performed with healthy 

Japanese women aged 20 to 59 years. The 

numbers of subjects in each age group are shown 

in Table 1. The study was reviewed and approved 

by the Clinical Research Ethics Committee of Kao 

Corporation, and subjects were fully informed 

about the study and provided written, informed consent. Sebum samples were obtained from 

all subjects’ whole faces with a single sheet of oil-blotting film, and sebum samples were 

stored at −80°C until RNA extraction. Age-related skin parameters were measured by the 

following methods: (i) using a Cutometer® to determine skin visco-elasticity (R2: Ua/Uf), 

net elasticity (R5: Ur/Ue), portion of visco-elasticity (R6: Uv/Ue), and portion of elasticity 

(R7: Ur/Uf); (ii) three-dimensional analysis of eye corner replicas to determine center line 

average roughness (Ra), 10-point average roughness (Rz), and the highest peak (Rmax); (iii) 

stratum corneum tape stripping for the stratum corneum cell area and relative CML (Nε-

(Carboxymethyl)lysine) in the stratum corneum; (iv) using an AGE (Advanced Glycation 

End Products) Reader® to assess the skin autofluorescence that indicates the skin glycation 

level; (v) visual evaluation for the hyperpigmentation score. 

 

2-2. Acquisition of SSL-RNA profiles 

SSL-RNA was extracted from sebum samples using QIAzol reagent (QIAGEN) and 

chloroform, and then purified with the RNeasy Mini kit (QIAGEN). Extracted RNA was 

subjected to an Ion AmpliSeq Transcriptome Human Gene Expression Kit (Thermo Fisher 

Scientific), with a slightly modified protocol. Briefly, SSL-RNA was reverse-transcribed and 

then multiplex amplification was performed. The amplicons were purified with AMPure XP 

(Beckman Coulter) and then confirmed by Agilent 4200 TapeStation (Agilent). Subsequently, 

the final library was constructed after digesting the excess primer and ligating adaptors. 

Libraries were quantified using an Ion Library TaqMan Quantitation Kit (Thermo Fisher 

Scientific) and diluted libraries were sequenced with Ion GeneStudio S5 Prime (Thermo 



Fisher Scientific). Sequence data were subjected to the primary analysis using the AmpliSeq 

RNA plugin of the Ion Torrent Suite Software Plugins (Thermo Fisher Scientific). 

 

2-3. Transcriptome analysis 

For data quality control (QC), samples with percentage of genes detected (Targets 

Detected) values greater than 20% (calculated from the AmpliSeq RNA plugin) were selected, 

and genes with non-zero read counts in more than 90% of the samples were selected. 

Normalized counts were obtained from read counts data by normalization with DESeq2 R 

package. Normalized counts were subsequently converted to log2(normalized counts + 1) for 

approximating to normal distribution. Spearman’s rank correlation analysis between 

chronological age and each gene expression was performed, then extracted significantly 

correlated genes (p-value < 0.05). 

 

2-4. Gene ontology (GO) analysis 

For genes significantly correlated with chronological age as described above, gene 

ontology enrichment analysis was performed using PANTHER (http://pantherdb.org/) and a 

statistical analysis to calculate false discovery rate (FDR) was with Fisher’s exact test. GO 

terms significantly enriched in the gene sets were extracted (FDR < 0.05). 

 

2-5. Machine learning 

Supervised machine learning was conducted with the classification and regression training 

(caret) R package. For data that passed QC in the Transcriptome analysis section, read counts 

data were normalized by reads per million (RPM) method and converted to log2(RPM + 1) 

for approximate the normal distribution. Chronological age regression models were 

constructed based on gene expression that were significantly correlated with chronological 

age as features. Specifically, the samples (RPM data) were divided into 50% training data 

and 50% test data through stratified sampling. As data pre-treatment, missing value 

imputation by the k-nearest neighbor algorithm (k = 5) and standardization were performed 

for the training data features. Regression model were constructed by 10-fold cross-validation 

of the training data, and the optimal parameters of the indicated 10 algorithms were selected 

by a grid search: linear multiple regression, penalized linear regression (Lasso, ridge 



regression, and elastic net), partial least squares (PLS) regression, decision tree, random 

forest, linear kernel support vector machine (SVM), polynomial kernel SVM, and Gaussian 

kernel SVM. The root mean square error (RMSE) of the measured and predicted values were 

used as precision evaluation indices, and the algorithm and parameter combination with the 

lowest RMSE among the constructed models was adopted as the best model. Finally, the 

generalization performance of the constructed models was verified using test data after the 

same pre-treatment as that for the training data. 

 

2-6.  Examination of the relationships between chronological/biological age and skin 

parameters 

Pearson’s correlation analysis between chronological age and age-related skin parameters 

in all subjects was performed. For the hyperpigmentation score only, Spearman’s rank 

correlation analysis was performed. In addition, skin parameters for each age group were 

statistically compared using the Tukey-Kramer test. For each of the chronological age groups 

(20s, 30s, 40s, and 50s), skin parameters for the oldest 25% and youngest 25% of the 

population at biological age, were statistically compared using the Welch’s t-test, and the 

Mann-Whitney U-test was only used for the hyperpigmentation score. In addition, For the 

test data described in Machine learning section, Spearman’s rank correlation analysis was 

performed between biological age and skin parameters and between chronological age and 

skin parameters, at chronological age in the 20s, 30s, 40s, and 50s. 

 

3. Results.  

 

3-1.  Subjects’ skin aging characteristics 

For the investigation with the aim of understanding skin aging, it was to be confirmed that 

the subjects constituted a population with general skin aging characteristics. Correlation 

analysis between chronological age and age-related skin parameters was performed for all 

subjects aged 20-59 years. The results indicated that all skin parameters, that is skin elasticity 

(R2, R5, R6, and R7) measured with a Cutometer®, skin surface roughness (Ra, Rz, and 

Rmax) obtained via three-dimensional analysis of skin replica, the stratum corneum cell area 

and stratum corneum CML relative value measured on stratum corneum tape stripping, the 



skin glycation level measured with an AGE Reader, and the hyperpigmentation score judged 

visually by an expert evaluator, showed significant correlations with chronological age (p < 

0.05; Fig.1A-K). Furthermore, comparisons of the skin parameters for each age group tended 

to show the more difference between subjects in their 30s and 40s, and the distribution tended 

to be greater for subjects in their 40s than for those in their 30s (Fig.1L-N). It is known that 

these skin parameters, represented by surface roughness (wrinkles) and hyperpigmentation, 

change with aging [4], and this tendency was found in our results. These results show that 

the subject population in this study had the general characteristics of skin aging, with changes 

being more marked in subjects in their 40s. 

 

3-2.  Age-related changes in SSL-RNA 

As it was to be confirmed that the subjects have characteristics of skin aging, it was deemed 

possible to investigate skin aging in this population. In previous studies about biological age, 

the degree of aging was estimated based on biomolecular information that changes with aging. 

In the present study, whether SSL-RNAs expression show age-related changes was examined, 

for which the expression levels of 2,323 genes in 113 samples that had passed QC were 

normalized and approximated to normal distributions by logarithmic transformation. 

Spearman’s rank correlation coefficient (rho) and significance probability value (p-value) 

between normalized expression levels for each gene and chronological age were calculated 

to extract genes that change with aging. As a result, 189 genes showing significant positive 

correlations with chronological age (rho > 0 and p < 0.05) and 179 genes showing significant 

negative correlations with chronological age (rho < 0 and p < 0.05) were obtained. 

Gene ontology (GO) analysis was performed for each of the 189 positively and 179 

negatively correlated genes. The results indicated that 386 GO terms, such as “response to 

organic substance (GO:0010033)” and “immune system process (GO:0002376)”, were 

significantly enriched in the positively correlated genes (FDR < 0.05). On the other hands, 

153 GO terms, such as “macromolecular catabolic process (GO:0009057)” and “oxidative 

phosphorylation (GO:0006119)”, were significantly enriched in genes showing a negative 

correlation (FDR < 0.05). In a previous transcriptome analysis with skin biopsies of healthy, 

Caucasian females, it was found that the expression of genes involved in the immune 

response and cellular senescence increases with age, whereas the expression of genes 



 



associated with metabolism, including mitochondrial function, decreases [5]. In the present 

study, it was found that immune response functions were enriched in genes showing positive 

correlations. Moreover, essential transcription factors regulating the immune response, such 

as NFKB1/2 (nuclear factor kappa B subunit 1/2) and RELA (v-rel avian 

reticuloendotheliosis viral oncogene homolog A), typical cytokines and matrix 

metalloproteinases, such as TNF (tumor necrosis factor) and MMP9 (matrix 

metalloproteinase 9), and the cellular senescence factor CDKN1A (cyclin dependent kinase 

inhibitor 1A) were changed with aging. In addition, mitochondrial functions, such as 

oxidative phosphorylation and ATP metabolism, were enriched in negatively correlated 

genes, clearly showing that differential gene expression in SSL-RNA was consistent with 

previously reported age-related changes. In summary, it was suggested that SSL-RNA 

provides information about age-related changes. 

 

3-3.  Construction of chronological age regression model by machine learning 

Up to this point, genes with differential expression with aging (i.e., with a significant 

correlation with chronological age) were identified in SSL-RNA, and it was suggested that 

these gene sets provide information about age-related information. In this study, to 

investigate the possibility of obtaining an age-related index based on SSL-RNA, we 

attempted to construct a chronological age, a general index of aging, regression model based 

on all 368 genes identified in the previous section as features. The 113 samples that passed 

QC and for which the expression levels were normalized and transformed to log2(RPM + 1) 

were split into 50% training data (n = 58) and 50% test data (n = 55), such that the 

chronological age distribution was consistent. In addition, each feature of the training data 

was pre-treated via missing value imputation and standardization. With these training data, 

model construction and optimal parameter selection were performed by 10-fold cross-

validation for the 10 algorithms described in the Machine learning section. As a result, the 

model using partial least squares (PLS) regression had the lowest resampled RMSE, and thus, 

the algorithm and selected parameters combination were considered to present the best model. 

Test data, which were not involved in the model construction, were then inputted to verify 

the generalization performance of the constructed model. The Pearson’s correlation 

coefficient (r) between the predicted values and measured values (chronological age) was 



calculated, and a strong correlation was found, r = 0.77, indicating that the constructed model 

had high generalization performance. These findings show that machine learning can be used 

for regression analysis of chronological age based on SSL-RNA. 



 



3-4.  The definition of biological age and examination of the relationship with skin 

aging 

Although it was shown that machine learning can be used for regression analysis of 

chronological age based on SSL-RNA, there were some subjects with high predicted values 

and others with low values despite being in the same chronological age group. As the 

constructed regression model based on gene expression that changed with aging as the feature, 

the differences in predicted values show the degree of deviation from the average gene 

expression in that age group. Therefore, it was considered that differences in predicted values 

might reflect differences in the degree of aging in individuals. In this context, whether this 

index is related to skin aging was examined when the chronological age predicted by machine 

learning was taken to be the biological age based on SSL-RNA. For the test data in the 

previous section, correlation analysis between the predicted age and skin parameters revealed 

significant (p < 0.05) correlations for all items except the stratum corneum cell area and R6. 

These findings suggest that the chronological age predicted by machine learning is associated 

with skin aging. Therefore, this value was defined as the biological age based on SSL-RNA. 

 

3-5.  Verification for superiority of biological age based on SSL-RNA over 

chronological age  

To verify that biological age based on SSL-RNA reflects the degree of skin aging more 

accurately than chronological age, which is simply elapsed time, whether differences in 



biological age alone could detect differences in the degree of skin aging between two groups 

with no difference in chronological age was examined. Therefore, based on a group with 

chronological age in their 40s, which is considered that skin aging starts to be apparent, the 

degree of skin aging was compared between groups with different biological ages within the 

40s. Specifically, with test data, age-related skin parameters were compared between the four 

subjects in the top 25% of biological age (older) and the four subjects in the bottom 25% of 

biological age (younger),  in their 40s (n = 14). As a result, in two groups with no significant 

differences in chronological age but with significant differences in biological age, older (i.e. 

group has high biological age) showed slightly lower R5, and significantly or slightly higher 

Ra, Rmax, and AGE Reader measurements than younger. It was therefore confirmed that 

even in the same chronological age group, subjects with a higher biological age tend to have 

a lower skin visco-elasticity, a rougher skin surface, and a more advanced skin glycation, 

suggesting their tendency to have more advanced skin aging. These results suggest that 

biological age can be used to detect differences in the degree of skin aging between two 

groups with no difference in chronological age.  

In addition, a study was performed with all subjects in their 40s. As detailed in Section 3-

1, skin parameters related to skin aging show significant correlations with chronological age. 

However, with the test data, a restriction to subjects in their 40s results in loss of significant 

correlation between the chronological age and skin parameters, except skin surface roughness 

(Ra and Rz). Nevertheless, with respect to biological age, when correlation analysis with skin 

parameters was performed solely for subjects with chronological ages in their 40s, significant 

correlations were detected in skin visco-elasticity (R2, R5, and R7), skin surface roughness 

(Ra, Rz, and Rmax), and skin glycation (AGE Reader measurements). These findings suggest 

that biological age reflects the degree of skin aging more accurately than chronological age. 

 

4. Discussion.  

The most generally recognized index of aging is the number of years since birth, that is, 

chronological age. However, considering that some people require nursing care while others 

enjoy sports activities at the same chronological age, this value, which is simply elapsed time, 

is not a perfect aging index. In this context, the concept of “biological age” has been proposed 

to more accurately estimate the decline in physical functions due to aging. In recent years,  



 

rapid advances in analytical technologies and the development of computational methods, 

such as machine learning, have enabled us to acquire a vast amount of biological information 

and the extraction of useful information. In connection with this, biological age has been 

estimated based on biological “big data”, such as transcriptomic, proteomic, and 

metabolomics [2]. Above all, the epigenetic clock has attracted global attention as the most 

promising estimation method, having been proposed by Horvath et al. in 2013. In the 

epigenetic clock, the degree of DNA methylation is used as a feature to construct a 

chronological age regression model, and the predicted value is defined as the biological age 

based on the degree of DNA methylation [1]. The same estimation method was considered  



 



appropriate for the present study, and chronological age regression model based on the SSL-

RNA profiles was constructed. As a result, high generalization performance of the 

constructed model was shown by the test data, which were not involved in model construction. 

Therefore, when that predicted chronological age is taken to be the biological age based on 

SSL-RNA, whether the biological age is associated with age-related skin parameters was 

examined. As a result, significant correlations with numerous skin parameters were detected, 

and taking this predicted value as the biological age based on SSL-RNA was considered 

reasonable. Furthermore, the verification of whether the estimated biological age reflected 

skin aging more accurately than chronological age showed that between two groups with no 

difference in chronological age but differences in biological age could detect differences in 

skin aging. In other words, the findings suggest that the genes used for estimation in this 

study, as features, are closely linked to skin aging, and it would be meaningful to assess the 

detected genes in more detail as target molecules for anti-skin aging technology. 

The phenotype of skin aging, represented by wrinkles and hyperpigmentation, is difficult 

to improve once it becomes apparent, and preventive measures such as ultraviolet protection 

and moisturizing are important. However, in practice, it is difficult to recognize skin 

problems before the phenotype is apparent, and people therefore cannot readily realize the 

importance and effectiveness of preventive measures. Biological age based on SSL-RNA is 

estimated from gene expression information in the skin and can be used as an index of skin 

aging before the skin aging phenotype becomes apparent. It offers an advantage over methods 

for calculating the apparent age of the skin from facial photographs. In addition, in contrast 

with methods involving biopsy, sebum can be collected repeatedly from the same site, 

making it possible to track gene expression information in the skin, including biological age. 

Therefore, by repeatedly collecting sebum, the biological age and its progression at the time 

of collection can be estimated, and this method therefore offers a new index that can 

objectively be used to assess efforts made to prevent skin aging when the effects are not 

readily realized. Furthermore, research on tracking skin aging prevention and alleviation 

measures from the perspective of biological age should further elucidate the significance of 

this index. In other words, whereas chronological age is irreversible, it might be possible to 

improve biological age by reassessing care habits and environmental factors. 

 



5. Conclusion.  

This study showed that SSL-RNA, which constitutes non-invasively collected 

comprehensive gene expression internal skin, provides information on age-related changes 

in the skin. Furthermore, by combining this information on age-related changes with machine 

learning, it was determined to be possible to estimate individual differences in the degree of 

skin aging, which cannot be determined by chronological age alone, as the biological age. 

We consider that biological age is an innovative index useful for examination of skin aging 

that provides more functional understanding of that factor in individuals in a timely manner 

as well as a personalized cosmetic future plan. 
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