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Abstract 

Background 

To select optimized skin-care solutions, it is essential to analyze and comprehend the skin. 

Both genetic and environmental factors act as important factors for skin aging and change. 

Understanding the effects of these factors not only explains why individuals differ in 

phenotypes, but also helps predict future phenotypes. This study aimed to quantitatively 

analyze the effects of environment, lifestyle, and innate genes on current skin conditions.  

Methods 

Six phenotypes (wrinkles, melanin, redness, dullness, hydration, and oiliness) were examined 

in the present study using data from 2526 women aged 20–60 years. Feature selection for the 

exposome and gene data was conducted using the XGBoost algorithm. Each phenotype was 

categorized into five classes: worst, bad, normal, good, and best. The CatBoost algorithm 

was used to predict the phenotype classes of the participants based on the selection of 

significant features, while SMOTE mitigated the corresponding class imbalance problem. 

Results  

Through feature selection, we identified 10 key genetic features per phenotype that were 

highly associated with the phenotype. The overall accuracy of the predictive model was 

calculated to be 46% for wrinkles, 54% for melanin, 37% for redness, 39% for dullness, 41% 

for hydration, and 33% for oiliness, showing an improvement of 31%, 17%, 12%, 5%, 24%, 

and 120%, respectively, compared with that calculated without including genetic features.  



Conclusion 

The ultimate goal of this study is to use big data and AI technology to predict future skin 

conditions based on the outcomes of our current lifestyle choices and environmental exposure 

as well as genetic factors. On the basis of this study, future longitudinal studies will be able 

to accurately predict the effect of current intrinsic and extrinsic factors on future skin 

conditions and develop it into a study that aids in personalized skincare solutions. 
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Introduction.  

Skin aging and sensitivity are caused by a combination of intrinsic and extrinsic factors, 

including increased expression of genes, lifestyle (eg, sleep and stress), and environmental 

exposure (eg, change of temperature, ultrafine dust concentration and ultraviolet [UV] 

light).1-5 Recently, the incidence of COVID-19 has increased people's awareness of the 

effects of unexpected environmental influences on the skin.6-8 Therefore, the need for 

personalized skincare to keep the skin healthier is growing. To improve the current condition 

and prevent problems of the skin, it is necessary to identify both genetic and external factors 

that affect the skin.   

In 2005, after American cancer epidemiologist Christopher Wilde coined the term 

“exposome”, Dr. Jean Krutmann proposed that environmental factors that are part of the skin 

aging exposome fall into the following major categories: (i) sun radiations, (ii) air pollution, 

(iii) tobacco smoke, (iv) nutrition, (v) under-researched, miscellaneous factors, and (vi) 

cosmetic products.9-10 Data from the correlation analysis between the various skin-related 

variables and exposomic factors acquired by IOPE Lab (Seoul, Korea) in 2016 showed that 

the exposome does affect the skin. For instance, the effect of wearing a mask and fine dust 

on skin sensitivity were quantitatively analyzed. According to the decision tree analysis, use 

of sunscreen had the largest influence on aging, followed by life experiences such as 

pregnancy or childbirth. 

Understanding the genetic characteristics of the skin will provide an optimal solution for 

personalized care and improvement of the skin. The genetic identification of skin-related 

phenotypes has become recently possible using genome-wide association studies (GWAS). 



However, most GWAS have focused on skin properties that are unique to Caucasian 

populations. Hence, genomic studies are needed for Asian populations. In 2016, the MC1R 

gene was found to determine the age of Dutch women, and in 2021, P&G discovered genes 

related to “sensitive skin” through another GWAS study.11-13 It has been reported that yet 

another GWAS study helped discover multiple genetic loci related to skin color in Korean 

women, and a machine learning algorithm that predicts the skin characteristics of Korean 

women was developed.14-15 

We previously researched the prediction of the characteristics of the skin by investigating 

the phenotype-genotype interaction16 and discovered markers that have a common 

correlation with wrinkles and melanin; additional research helped identify and report the 

underlying mechanism involved.17 It has been confirmed that certain common markers 

related to redness, moisture content, ceramide concentration, and skin temperature are highly 

related to skin barrier function and are likely to be used as skin sensitivity prediction 

markers.18 

In this study, we attempted to identify factors for predicting changes in skin condition 

through correlation analysis with lifestyle, climate/environment, and innate genes that affect 

the current skin condition. We used a machine learning algorithm to predict changes in the 

participants’ skin using variables generated during feature engineering. After converting 

standardized scores for each phenotype into 5-point scales, we developed a classification 

model for multiple classes. The most interesting aspect of this study is the role of the 

genotype–phenotype correlation analysis in providing insight into the effects of acquired 

lifestyle and environment, at large, and cosmetics, in particular, on current skin conditions. 

We present our initial model, which correlates the effect of each factor, including genes, on 

probable skin aging with good predictive power using a machine learning algorithm. 

 

  



 

Materials and Methods.  

 

1) Participants 

The participants were recruited from the IOPE Lab (Seoul, Korea). A total of 2526 samples 

were gathered between 2016 and 2019. All participants provided written informed consent, 

and this study was approved by the institutional review board (2017-1EF-N022R). 

 

2) Facial phenotype examination 

Skin Touch®  was used to measure the degree of hydration and oiliness. Antera 3D®  

(Miravex, Ltd, Dublin, Ireland) was used to measure not only the concentration and 

homogeneity of pigmentation and redness distributed over the skin but also the depth of 

periorbital wrinkles. Homogeneity of pigmentation is expressed as dullness in this paper. 

 

3) Materials 

This study involved 2526 Korean women aged 20 to 60 years, with 91% in their twenties and 

thirties. Information on 41 distinct genes and 33 lifestyle and environmental variables was 

gathered from the participants. The effectiveness of both lifestyle and environmental factors 

was demonstrated through correlation analysis using data from 2526 subjects in above 

sections. This research will also explain how those characteristics can be used to predict the 

degree of phenotypes along with genetic features from 452 subjects. In the prediction model, 

six phenotypic levels (wrinkle, melanin, redness, dullness, hydration, and oiliness) were 

measured and used as response variables. Each phenotypic level was standardized, and the 

minus sign was used to invert the standardized value only for wrinkles, melanin, redness, and 

dullness. By doing so, a larger value for each phenotypic level indicated a better skin 

condition. Each phenotypic level was then divided into five groups: < 10th, 10th to 30th, 30th 

to 70th, 70th to 90th, and  90th percentiles. Each phenotypic group was assigned one to five 

points, which were intuitively interpreted as worst, bad, normal, good, and best, respectively. 

Statistical analyses were performed using PLINK version 1.9 and SPSS program, as well as 

Python 3.9. 

 



4) Genotyping and SNP quality control 

Oral swab samples were obtained, and DNA was extracted using ExgeneTM Tissue SV 

(GeneAll, Seoul, Korea). All DNA samples were amplified and randomly portioned into 25–

125 bp fragments, which were in turn purified, re-suspended, and hybridized in Axiom 

Genome-Wide Human Array Plates following hybridization; the bound targets were washed 

under stringent conditions to remove non-specific background and minimize noise resulting 

from random ligation events. The 902,527 single nucleotide polymorphisms (SNPs) were 

genotyped according to the manufacturer’s instructions using an Axiom Precision Medicine 

Research Array (Affymetrix, Santa Clara, CA, USA), which provided genome-wide 

coverage in five major populations as well as imputation accuracy for GWAS markers 0.90 

and 0.94 with minor allele frequencies (MAF)>1% and >5%, respectively, for the 7.4 million 

imputed markers in Asian population. To reduce potential concerns regarding batch effects 

and the possibility of false associations, we applied highly stringent quality control measures 

while selecting SNPs for use in the case and control datasets. Quality control procedures were 

performed for each of the 902 K SNPs before the association tests were conducted. The SNP 

set was filtered based on genotype call rates (≥ 0.98) and MAF (≥0.01). The Hardy–Weinberg 

equilibrium (HWE) was calculated for individual SNPs using an exact test. After filtering, 

312,942 polymorphic SNPs were analyzed on chromosomes 1 to 22, and 6,416 and 816 SNPs 

were analyzed on chromosomes X and Y, respectively. 

 

5) GWAS 

Six phenotypes were tested by linear regression analysis with an additive model after 

adjustment for age. P-values were not adjusted for multiple tests. Statistical significance was 

determined at value of P < 0.0001 or functional associations.  

 

6) Feature Selection 

In the model for phenotype prediction, the covariates included 41 genetic variables, 16 

lifestyle-related variables, and 17 environmental variables. Owing to the large number of 

features compared to the number of subjects, feature selection was required to improve 

performance. In this study, machine learning-based feature selection methods for selecting 

the genetic features were effective for removing insignificant variables. A machine learning-



based feature selection method was used for selecting the genetic variables. XGBoost was 

used to filter out the most influential genetic predictors. The XGBoostClassifier was used to 

determine feature importance, and the 10 most important genetic variables per phenotype 

were identified. 

 

7) Oversampling 

When phenotypic traits were converted to 5-point scales, extreme skin conditions were 

captured using percentiles with unequal spacing. However, this often results in a class 

imbalance, which may lead to overfitting and poor predictive performance. Thus, SMOTE, 

one of the most effective oversampling strategies, was employed in this study to achieve a 

balance between the classes and compensate for data-related problems. 

 

8) Machine-Learning model 

CatBoost algorithm was employed for multi-class classification. This strategy works well 

with data containing many categorical variables. As the genetic traits and other covariates in 

our data were ordered categorical variables, CatBoost's encoding algorithm was useful. The 

data were randomly split into two sets: training (90 percent) and test (10 percent). The 

hyperparameters were adjusted for each response variable of the six phenotypes. 

 

Results. 

The mean and standard deviation for six unstandardized phenotypic levels are as follows: 

11.65 ± 2.83 for wrinkle, 0.51 ± 0.06 for melanin, 1.22 ± 0.18 for redness, 0.04 ± 0.02 for 

dullness, 51.44 ± 8.56 for hydration, and 20.73 ± 12.03 for oiliness. (Table 1). Distribution 

plots of skin indicators showed in Figure 1. 

 

1) Phenotype Measurements  

Table 1: Parameters, Mean Values, and Standard Deviations (SDs) of the Subjects 

Parameters Site Mean (± SD) 

Wrinkles (A.U.) Crow’s feet 11.65 (± 2.83) 

Melanin (A.U.) Cheek 0.51 (± 0.06) 

Redness (A.U.) Cheek 1.22 (± 0.18) 

Dullness (A.U.) Cheek 0.04 (± 0.02) 

Hydration (A.U.) Cheek 51.44 (± 8.56) 

Oiliness (A.U.) Cheek 20.73 (± 12.03) 



 

Figure 1: Distribution plots of Skin Indicators  

 

 

2) Machine Learning 

First, an experiment was done to determine prediction performance utilizing a dataset lacking 

genetic information. The accuracy, precision, recall, and F1 score of the CatBoost algorithm 

for multi-class classification prediction of skin conditions in the test data without genetic 

characteristics are shown in Table 2. 

 

Table 2. Predictive Performance of the CatBoost Algorithm without Genetic 

Information in Test Data 

 wrinkle melanin redness dullness hydration oiliness 

Accuracy 0.35 0.46 0.33 0.37 0.33 0.15 

Precision 0.18 0.48 0.29 0.35 0.45 0.16 

Recall 0.32 0.46 0.29 0.36 0.45 0.24 

F1 score 0.23 0.45 0.27 0.35 0.33 0.10 

 



The model's performance without genetic information was low, according to the evaluation 

measures. As a result, we used feature selection to identify relevant genetic traits and paired 

them with lifestyle and environmental variables to predict six phenotypes. Table 3 lists 

certain genetic characteristics. 

 

Table 3. Feature Importance of Genetic features 

Phenotype SNP Gene 
Feature 

Importance 

Wrinkle 

rs74718616 TLL2 0.483 

rs74650929 PRKCH 0.385 

rs142918295 FGFR1OP2 0.323 

rs142331737 SLC15A5 0.232 

rs75165433 CNKSR3 0.189 

rs140464409 ASB7 0.131 

rs181465583 SPOCK3 0.087 

rs35702263 LRRC6 0.061 

Melanin 

rs77310600 SIAE 0.899 

rs28641937 ADAM28 0.349 

rs16865318 CLDN1 0.157 

Redness rs74914748 KRT9 2.291 

Dullness 

rs438669 NAV3 0.423 

rs73353749 RCAN1 0.264 

rs3747250 CELSR1 0.150 

Hydration 

rs75165433 CNKSR3 0.258 

rs438669 NAV3 0.103 

rs117880177 PPP2R2B 0.004 

Oiliness 
rs142918295 FGFR1OP2 2.802 

rs1386821 IL6R 2.531 

 

For each phenotype, we identified 10 significant genetic traits based on a machine learning 

feature-selection mechanism. Among the significant genetic traits, a total of 20 genetic 



features were chosen to have particularly good predictive power - 8 were related to wrinkles, 

3 to melanin, 1 to redness, 3 to dullness, 3 to hydration, and 2 to oiliness (Table 3).  

Predictive performance was greatly improved by adding genetic information to the exposome. 

Table 4 lists the accuracy, precision, recall, and F1 score of the CatBoost algorithm based 

only on the exposome. In particular, the accuracy, precision, recall, and F1 score of the 

predictive model for melanin were improved by 17%, 25%, 20%, and 7%, respectively, 

compared with the cases without genetic features. 

 

Table 4. Predictive Performance of the CatBoost Algorithm in Test Data 

 wrinkle melanin redness dullness hydration oiliness 

Accuracy 0.46 0.54 0.37 0.39 0.41 0.33 

Precision 0.43 0.60 0.38 0.46 0.38 0.23 

Recall 0.44 0.55 0.39 0.45 0.44 0.25 

F1 score 0.43 0.48 0.37 0.38 0.37 0.23 

 

Figure 2. Flowchart for predicting six phenotypes  

 

 



The main objective of the current study is to use big data and AI to anticipate future skin 

problems as the outcomes of various factors. The current study used genome and exposome 

data to investigate six phenotypes (wrinkles, melanin, redness, dullness, moisture, and 

oiliness). The XGBoost algorithm was used to extract important features from the exposome 

and gene data. Because each phenotype was divided into five groups (the worst, bad, normal, 

good, best conditions), the CatBoost algorithm was used to predict the participant's 

phenotypic classes based on the identification of relevant characteristics, and SMOTE was 

utilized to address the corresponding class imbalance issue (Figure 2). 

 

Figure 3. SHAP values for each class of phenotype 

 

 

 



 

 

 

 

Figure 3 shows SHAP values (Lundberg and Lee, 2017) for each class of phenotype. In 

machine learning models, SHAP is used to understand the importance of features on model 

predictions. The left column of Figure 3 corresponds to a barplot of mean absolute SHAP 

values for features, showing the global importance of features on model predictions in a 

decreasing order. In a prediction model for wrinkle, top 3 features that have the greatest 

impact on the model predictions are age, skin deterioration after getting stress, and stress 

level. Furthermore, age, amount of sunscreen that subjects put on, outdoor activity level, 

average temperature, and average wind speed are the most influential features for melanin, 

redness, dullness, hydration, and oiliness, respectively. 



The middle and right columns of Figure 3 correspond to beeswarm plots of SHAP when  

predicting the best and worst skin conditions, respectively, which show how each feature 

contributes on the model predictions. Each point in the figure is the SHAP value of the 

attribute and instance. The position of the Y-axis depends on the characteristics, and the 

position of the X-axis is determined by the SHAP value. The color represents the 

characteristic value, which means the higher the SHAP value goes to red. In a beeswarm plot, 

features are listed in the order of importance of impact on each of the best and worst skin 

conditions. For example, as a subject gets older, the likelihood that corresponding subject 

will be assigned to the class with the worst wrinkles increases. Conversely, it is less likely 

the subject will be allocated to the best class regarding wrinkles as age increases. As a result, 

the best wrinkle condition is positively associated with lower age and lower skin deterioration 

level after getting stressed while the worst wrinkle condition is positively associated with  

higher age and  lower NO2. Trouble level in T zone and U zone is negatively correlated with 

wrinkle, which means the subjects with much trouble is more likely to have many wrinkles. 

High values of age have negative contribution on melanin as they do on wrinkle. In the best 

class of melanin, environmental factors like SO2 and PM2.5 have negative correlation with 

melanin. On the other hand, lifestyle related features such as skin redenss reaction level are 

more relevant than environmental features in the worst class. The more frequent skin redness 

response people have, the higher level of melanin they get. 

In the case of redness, dullness, hydration, and oiliness, many other variables besides age are 

highly influential compared to wrinkle and melanin. Average wind speed and precipitation 

level are negatively correlated with the probability of belonging to the best class regarding 

redness, while the amount of sunscreen people put on is negatively associated with the worst 

class. Outdoor activity level strongly affects dullness, that is, the more outdoor activities 

people do, the darker their skin becomes. Hydration and Oiliness have particularly strong 

relationship with temperature. Temperature related features like daily average temperature 

and daily lowest temperature have positive impact on hydration as they become higher. 

Similar pattern occurs in oiliness while the association is not as evident as it is in hydration. 

Consequently, we can determine what a person needs to improve their skin condition by 

examining SHAP values from the prediction model. For instance, it is clear that a subject 

should put on more sunscreen to get out of the worst class of redness. In addition, as highly 



ranked features frequently fall under the categories of environmental and lifestyle-related 

variables, we can determine their significance. 

 

Figure 4. Skin Prediction Schematic Diagram 

Getting older (22 to 40) & Putting on less Sunscreen 

 

 

 

Figure 4 displays the skin prediction value based on Before (22 years old) and After (40 years 

old + putting on less screen) as a Schematic Diagram. It is clear that melanin moved from 

normal-good to bad, wrinkle changed from normal-bad to worst, hydration changed from 

normal-good to worst, and dullness adversely changed from normal-good to worst, despite 

the fact that there was no discernible change in redness or oiliness.  

 

Discussion.  

Customers use various skincare and functional cosmetics to prevent skin aging and improve 

the current condition of the skin. It is important to analyze and understand the skin to select 

optimized skin care solutions. Many cosmetics companies are introducing various 

customized services to provide tailor-made solutions for each customer’s personal skin 

conditions and needs, because every individual is born with different skin type and lives in 

different environments. The types of customizations being attempted while selecting 



cosmetics vary from “on-site mixed type,” where the product is manufactured and provided 

based on skin diagnosis and counseling done in the field, to “device type,” where the product 

is provided based on data obtained using internet of things (IoT) technology. Recently, 

customized solutions have been attempted to reflect genetic characteristics through direct-to-

consumer (DTC) genetic testing. 

In this study, we identified factors for predicting skin changes through a correlative analysis 

of lifestyle, climate/environment, and innate genes that affect current skin conditions. The 

result obtained through hierarchical and simple correlation analyses is intended to be used as 

a variable of the correlation function in the future. For example, the lifestyle factor that affects 

wrinkles the most was found to be skin deterioration level after getting stressed, which means 

the participants whose skin deteriorates less after stressed out showed a significant difference 

in wrinkles depending on other lifestyle-related features such asthe amount of stress they got 

and trouble level on T/U zone.. As the influence of the variable may vary depending on the 

result of the lifestyle response, it was intended to be reflected in the skin prediction logic. 

Next, a cross-analysis of the skin indicators and external environmental data was conducted. 

Consequently, the correlation between the environmental factors such as temperature, 

humidity, wind speed, amount of sunlight, fine dust, and air quality and the current skin 

condition was confirmed. However, this pattern changed slightly after customers started 

wearing masks owing to COVID-19. For example, we observed a significant increase in 

redness levels of the skin during the years 2019–2021 despite there being no change in the 

average temperature or ultrafine dust concentration compared with data from previous years. 

The reason could be attributed to the elevated temperature and humidity inside the mask and 

continuous physical stimulation.  

Thus, the current skin condition is influenced by an individual’s lifestyle, changes in the 

climate, and environment. Genetic data does seem to act as an important variable in the 

diagnosis and prediction of skin changes. Therefore, among the genetic variables screened, 

those with correlations to lifestyle and age predicted the skin index. For example, a person 

who smoked and did not use sunscreen during outdoor activities presented a high 

concentration of melanin in addition to mutations of MC1R, OCA2, AGER, and ASIP genes; 

the gene mutations were found to have an effect on the skin condition. 



Taken together, this knowledge will enable us to provide more proactive and personalized 

solutions in the field of cosmetics and in life care, such as lifestyle choices, eating habits, and 

environmental responses. We aim to enhance the diagnostic algorithm with further studies 

by collecting and analyzing data on various races and sexes. 

 

Conclusion.  

Current skin conditions are affected not only by genomic factors but also by the individual’s 

lifestyle, climate changes, and the environment. Recently, various service models have been 

developed to provide updated solutions that reflect the data collected directly from the 

customers. In this study, we developed an algorithm for diagnosing and predicting the “skin 

type” to provide a hyper personalized solution based on various data. We identified factors 

for predicting changes in skin condition through correlation analysis of variables that affect 

the current skin condition such as lifestyle, climate, environment, and innate genes. 

Prediction algorithms that reflect these variables can then propose customized solutions 

based on lifestyle and genetic information.  
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